Bounded Verification of Petri Nets and EOSs using Telingo: an Experience Report

CILC 2024 - Rome, 28/6/2024

Francesco Di Cosmo

Free University of Bozen-Bolzano

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Tephilla Prince

IIT Dharwad, India

Contribution

Available on Zenodo

Petri Nets

Petri Nets

Petri Nets

EOS – System Net

EOS – nested markings

EOS – nested markings

EOS – typed places

EOS – object autonomous events

EOS – object autonomous events

EOS – object autonomous events

EVENTS

 $e_1 = (id_{p_1}, t_0)$ $e_2 = (\hat{t_1}, \emptyset)$

 $e_3 = (\hat{t_2}, t_0 t_1 t_1)$

Object lossiness

 \geq_o

System lossiness

Full lossiness

 \geq_f

(\preccurlyeq, ℓ) -lossy runs

Perfect runs: only standard steps

 (\leq, ℓ) -runs: at most $\ell \leq |\mathbb{N}|$ steps of type $\leq M_1 \rightarrow M_2 \geq M'_3 \rightarrow M'_4 \geq M'_5 \geq M'_6 \rightarrow M_7 \rightarrow \cdots$

(\preccurlyeq, ℓ) -lossy problems

Is the system **robust** up to ℓ occurrences of \leq ?

(\preccurlyeq, ℓ) -lossy problems

Is the system **robust** up to ℓ occurrences of \leq ?

 (\leq, ℓ) -deadlock freeness

Input

An EOS E and an initial marking M.

Output

Is there a (\leq, ℓ) -run from M to a marking where no event is enabled?

Motivation

Model (M) **PNML Translator** PN or EOS C++ utility file In .LP **Specification (S) True/False** Reachability, Deadlock, Verification Does M affected by I Coverability, Safety on bounded and bounded by n runs satisfy S in n steps? Imperfection (I) Telingo Type and amount **Parameters** Test script Run size (n)

Prototype

Why bounded verification?

Problems on general EOS	\leq_f	\leq_{o}	\leq_s
0-reach	U	U	U
0-cover	U	U	U
<i>ℓ</i> -reach/cover	U	U	U
ω -reach/cover	D	U	U

F. Di Cosmo, S. Mal, T. Prince, Deciding Reachability and Coverability in Lossy EOS, PNSE'24

Why Telingo?

Telingo is declarative and supports temporal constraints

- E.g., :- &tel(>? (lossy >(>? lossy) allows at most one lossy step
- The meaning of lossy is declared orthogonally to EOS specification

Telingo returns finite runs

• Perfectly matches bounded verification

Encoding of PNs and EOSs is **elegant in ASP**

• E.g., when compared to SMT – R. Phawade, T. Prince, S. Sheerazuddin et al., *Bounded Model Checking* for Unbounded Client Server Systems, Arxiv (2022)

Correctness and performances

_	problem	lossiness	-imax =5 (s)	-imax =10 (s)	-imax =20 (s)	tapaal (s)
	deadlock	none	UNSAT in 0.052	SAT in 0.622	SAT in 82.754	SAT in 5e – 6
	deadlock	any	SAT in 0.009	SAT in 0.010	SAT in 0.009	NA
	1-safeness	none	UNSAT in 0.010	UNSAT in 0.014	UNSAT in 0.027	UNSAT in 0
	1-safeness	any	UNSAT in 0.013	UNSAT in 0.018	UNSAT in 0.032	NA

Table 1

Comparative Results with TAPAAL for the Eratosthenes-PT-010 PN from the MCC benchmarks [12].

Give it a try

NWN Telingo Analyzer on Zenodo

