
Bounded Verification of Petri Nets and
EOSs using Telingo: an Experience Report

Tephilla Prince

IIT Dharwad, India

Francesco Di Cosmo

Free University of Bozen-Bolzano

CILC 2024 - Rome, 28/6/2024

Created a
Verification
Prototype

For safety,
reach, cover,
deadlock

Of lossy PNs
and EOSs

Contribution

Available on
Zenodo

Petri Nets

2

2

p1

p2

p3

p4

p5

Petri Nets

2

2

p1

p2

p3

p4

p5

Petri Nets

2

2

p1

p2

p3

p4

p5

EOS – System Net

2

2

p1

p2

p3

p4

p5

EOS – nested markings

2

2

p1

p2

p3

p4

p5

EOS – nested markings

2

2

p1

p2

p3

p4

p5

EOS – typed places

2

2

p1

p2

p3

p4

p5

EOS – object autonomous events

2

2

p1

p2

p3

p4

p5 EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

EOS – object autonomous events

2

2

p1

p2

p3

p4

p5 EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

EOS – object autonomous events

2

2

p1

p2

p3

p4

p5 EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

EOS – system autonomous events

2

2

p1

p2

p3

p4

p5 EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

p1

p2

p3

p4

p5

EOS – system autonomous events

2

2

EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

p1

p2

p3

p4

p5

EOS – system autonomous events

2

2

EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

p1

p2

p3

p4

p5

2

2

EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

EOS – system autonomous events

p1

p2

p3

p4

p5

2

2

EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

EOS – synchronization events

p1

p2

p3

p4

p5

EOS – synchronization events

2

2

EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

p1

p2

p3

p4

p5

EOS – synchronization events

2

2

EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

p1

p2

p3

p4

p5

EOS – synchronization events

2

2

EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

p1

p2

p3

p4

p5

EOS – synchronization events

2

2

EVENTS
𝑒! = 𝑖𝑑"! , 𝑡#
𝑒$ = ,𝑡!	, ∅

𝑒% = ,𝑡$, 𝑡#𝑡!𝑡!

Object lossiness

≥!

System lossiness

≥"

Full lossiness

≥#

(≼, ℓ)-lossy runs

Perfect	runs:	only	standard	steps
𝑀! → 𝑀$ → 𝑀% → ⋯

(≼, ℓ)-runs:	at	most	ℓ ≤ |ℕ|	steps	of	type	≼
𝑀! → 𝑀$ ≽ 𝑀′% → 𝑀′& ≽ 𝑀′' ≽ 𝑀′(→ 𝑀) → ⋯

(≼, ℓ)-lossy problems

Is the system robust up to ℓ occurrences of ≼?

(≼, ℓ)-lossy problems

(≼, ℓ)-deadlock freeness

Input

 An EOS E and an initial marking M.

Output

 Is there a (≼, ℓ)-run from M to a marking where no event is enabled?

Is the system robust up to ℓ occurrences of ≼?

Motivation

C
ur

re
nt

P
N

 t
oo

ls
 la

ck
of

EOS support

Imperfection support

Robustness analysis

Partial verification

Prototype

True/False
Does M affected by I

and bounded by n
satisfy S in n steps?

Model (M)
PN or EOS

In .LP

Specification (S)
Reachability, Deadlock,

Coverability, Safety
Verification
on bounded

runs
Telingo

PNML
file

Parameters
Run size (n) Test script

Translator
C++ utility

Imperfection (I)
Type and amount

Why bounded verification?

Problems on general EOS ≤𝒇 ≤𝒐 ≤𝒔
0-reach U U U
0-cover U U U
ℓ-reach/cover U U U
𝜔-reach/cover D U U

F. Di Cosmo, S. Mal, T. Prince, Deciding Reachability and Coverability in Lossy EOS, PNSE’24

Why Telingo?

Telingo is declarative and supports temporal constraints

• E.g., :- &tel(>? (lossy >(>? lossy) allows at most one lossy step
• The meaning of lossy is declared orthogonally to EOS specification

Telingo returns finite runs
• Perfectly matches bounded verification

Encoding of PNs and EOSs is elegant in ASP
• E.g., when compared to SMT – R. Phawade, T. Prince, S. Sheerazuddin et al., Bounded Model Checking

for Unbounded Client Server Systems, Arxiv (2022)

Correctness and performances

Prohibitively slow
on EOSs
• Nesting exacerbates

grounding

Slow on PNs
• Compared with

Tapaal

Correct answers
• Checked on MCC

benchmarks

Give it a try

NWN Telingo Analyzer on Zenodo

Translate PNs
from PNML to ASP

Analyze robustness
under lossiness

Replicate our tests

