University of Udine

Speeding up Answer Set Programming by Quantum Computing

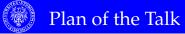
Davide della Giustina¹ Stefano Pessotto¹ Carla Piazza¹ <u>Riccardo Romanello</u>¹

¹ University of Udine, Italy June 28, 2024

1 / 20

- Quantum algorithms like Shor and Grover have proven the so-called *Quantum speed-up*
- Answer Set Programming (ASP) allows to solve NP-complete problems in a relatively short amount of time
- ASP solutions are found through a visit of a search space
- Our goal is to use Quantum Computation to speed up such research

- Solutions to ASP programs are called models
- The search space is made of all the possible models
- We are interested in finding only a small subset of models called *stable*
- We obtained a Quantum Algorithm to speed-up the research of such particular models



- Quantum Computation: a crash course
- Answer Set Programming: the theoretical minimum
- Three ingredients:
 - Grover search for ASP solutions
 - Quantum Weighted Model Counting
 - Rushing and Strolling through models
- Our Algorithm

- Quantum Computing only allows reversible operations
- Quantum states are described through normalized vectors inside \mathbb{C}^{2^n} for some *n*
- States are denoted using *bra-ket* notation

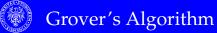
$$|0
angle = \begin{pmatrix} 1\\ 0 \end{pmatrix} \quad |1
angle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

A generic quantum state has the form

 $\left|\psi\right\rangle = \alpha\left|0\right\rangle + \beta\left|1\right\rangle$

- Quantum states can be manipulated only using unitary matrices
- Let $U \in \mathbb{C}^{2^n \times 2^n}$. Then *U* is unitary if and only if $UU^{\dagger} = I$
- Some examples of Unitary matrices are:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0\\ 0 & i \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0\\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$$
$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 \end{pmatrix}$$



A simple problem

- **Input**: a function $\chi : \{0, 1\}^n \mapsto \{0, 1\}$
- **Output**: a value $x \in \{0, 1\}^n$ such that $\chi(x) = 1$

A simple problem

- **Input**: a function $\chi : \{0, 1\}^n \mapsto \{0, 1\}$
- **Output**: a value $x \in \{0, 1\}^n$ such that $\chi(x) = 1$

A Classical Approach

- Test all the possible inputs, until you find a solution (if it exists)
- Complexity: $\mathcal{O}(N)$, where $N = 2^n$

A simple problem

- **Input**: a function $\chi : \{0, 1\}^n \mapsto \{0, 1\}$
- **Output**: a value $x \in \{0, 1\}^n$ such that $\chi(x) = 1$

A Classical Approach

- Test all the possible inputs, until you find a solution (if it exists)
- Complexity: $\mathcal{O}(N)$, where $N = 2^n$

A Quantum Approach

- Adopt a *Quantum Oracle* \mathcal{O}_{χ} for the function χ
- Solves the problem with $\mathcal{O}(\sqrt{N})$ calls to the oracle

(Another) simple problem

- **Input**: a function $\chi : \{0, 1\}^n \mapsto \{0, 1\}$
- **Output:** $|\overline{X} := {\overline{x} \in {\{0,1\}}^n : \chi(\overline{x}) = 1}|$

(Another) simple problem

- **Input**: a function $\chi : \{0, 1\}^n \mapsto \{0, 1\}$
- **Output:** $|\overline{X} := {\overline{x} \in {\{0,1\}}^n : \chi(\overline{x}) = 1}|$

A Classical Approach

- Test all the possible inputs, count how many satisfy χ
- Complexity: $\theta(N)$, where $N = 2^n$

(Another) simple problem

- **Input**: a function $\chi : \{0, 1\}^n \mapsto \{0, 1\}$
- **Output:** $|\overline{X} := {\overline{x} \in {\{0,1\}}^n : \chi(\overline{x}) = 1}|$

A Classical Approach

- Test all the possible inputs, count how many satisfy χ
- Complexity: $\theta(N)$, where $N = 2^n$

A Quantum Approach

- The eigenvalues of O_χ have the form e^{iθ} and e^{i(2π-θ)}
- Compute such eigenvalues using phase estimation algorithm
- $\bullet \ |\bar{X}| \coloneqq 2N \sin^2 \frac{\theta}{2}$

- ▶ **Program** $\Pi := \{p \leftarrow \neg q, q \leftarrow \neg p, r \leftarrow p, r \leftarrow q\}$
- **Interpretation:** binds some values to constants, functions and relations. For the above (ground) program, $S := \{p, r\}$ and $S' := \{p, q, r\}$ are both interpretations
- ► Model: let *I* be an interpretation for II. *I* is a model (answer set) if it satisfies all the rules of II.
- Stable model: A model *I* is said to be stable if it is minimal with respect to set inclusion—no smaller set *I*′ ⊂ *I* satisfies the same set of rules

- What: Count and find stable models of an ASP program
- How: Grover's algorithm with an oracle that marks stable models only
- Type of algorithm: Quantum, to solve a classical problem

- What: Weighted Count—some solution are *better* than the other—the number of interpretations that satisfy a propositional formula (WMC)
- How: Tweak Quantum Counting to take into account weights given to solutions
- Type of algorithm: Quantum, to solve a classical problem

Weighted Count of Propositional Models

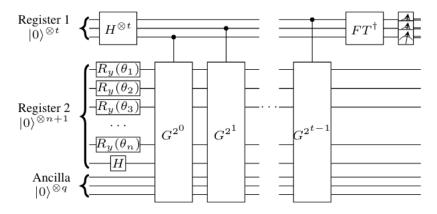


Figure 1: The Quantum Weighted Model Counting Circuit

- What: Navigate in a fast fashion through the solution space of an ASP program to find stable models
- How: Introduce the notion of facets to move from one model to another.
 Moreover, a weight is assigned to each facet to guide the visit.
- Type of algorithm: Classical, to solve a classical problem



Let Π , $\mathcal{AS}(\Pi)$ be an ASP program, and the set of its stable models, respectively.

- $\mathcal{BC}(\Pi) := \bigcup \mathcal{AS}(\Pi)$ the set of Π 's brave consequences;
- $\mathcal{CC}(\Pi) := \bigcap \mathcal{AS}(\Pi)$ the set of its *cautious consequences*.

The set of *facets* of Π is then defined as follows:

$$\mathcal{F}(\Pi) \coloneqq \mathcal{F}^+(\Pi) \cup \mathcal{F}^-(\Pi) \tag{1}$$

where:

$$\mathcal{F}^{+}(\Pi) := \mathcal{BC}(\Pi) \setminus \mathcal{CC}(\Pi) \qquad \mathcal{F}^{-}(\Pi) := \left\{ \bar{\alpha} : \alpha \in \mathcal{F}^{+}(\Pi) \right\}$$
(2)

- An interpretation *S* for Π satisfies an *inclusive facet* $\alpha \in \mathcal{F}^+(\Pi)$ if $\alpha \in S$.
- ▶ *S* satisfies an *exclusive facet* $\bar{\alpha} \in \mathcal{F}^{-}(\Pi)$ if $\alpha \notin S$.
- We denote by *ic(f)* the singleton ASP program defined as follows :

$$ic(f) := \begin{cases} \{\leftarrow \neg \alpha\} & \text{if } f \text{ is an atom } \alpha \\ \{\leftarrow \alpha\} & \text{otherwise} \end{cases}$$
(3)

where $f \in \mathcal{F}(\Pi)$.

Let Π be an ASP program.

- The activation of a facet $f \in \mathcal{F}(\Pi)$ results in the program $\Pi' := \Pi \cup ic(f)$
- The activation of *f* denotes a *navigation step* from Π to Π'
- A finite sequence δ := (f₁,...,f_k) of facets defines a *route*, and denotes an ordered sequence of navigation steps from an initial program Π

Let II be an ASP program. We denote with $\mathcal{AS}(II)$ the set of its stable models.

- In [1], authors proposed different weight functions to guide the navigation of the solution space of II
- One of these functions—namely w_{#AS}—showed very good results
- It is defined as follows:

 $w_{\#\mathcal{AS}}(f,\Pi^{\delta}) \coloneqq |\mathcal{AS}(\Pi^{\delta})| - |\mathcal{AS}(\Pi^{\langle \delta f \rangle})|$

Unfortunately, its computation is #coNP-complete

- We developed a Quantum Algorithm to compute the value of $w_{\#\mathcal{AS}}$
- Such algorithm relies on the solution to the Weighted Model Counting Problem

Technical Details

- Let χ be a boolean function that outputs 1 if and only if its input encodes a stable model of Π
- To apply WMC, we define a *weight* function *w* as follows:

$$w(i,1) := \begin{cases} 1 & \text{if } \exists j = 1, \dots, k f_j = \alpha_i \\ 0 & \text{if } \exists j = 1, \dots, k f_j = \overline{\alpha}_i \\ 1/2 & \text{otherwise} \end{cases} \quad \forall i = 1, \dots, n$$

and set each w(i, 0) so that w is normalized.

Suppose k is the number of facets used for the navigation. What we proved is as follows:

 $|\mathcal{AS}(\Pi^{\delta})| = 2^{n-k} \cdot \mathrm{WMC}(\chi, w)$

Hence, by using the value computed via WMC, we can compute w_{#AS} with a quadratic speed-up over any classical method

(4)

- We tackled the problem of speeding-up Answer Set Programming using Quantum Computation
- We focused on the task of searching for stable models of an ASP program
- We started from an existing classical method to visit the search space
- We introduced a quantum routine to compute the function w_{#AS} which was proven to be very effective when adopted to guide such visit

- Johannes K. Fichte, Sarah A. Gaggl, and Dominik Rusovac.
 Rushing and Strolling among Answer Sets – Navigation Made Easy.
 CoRR, 12 2021.
- [2] David A. Meyer, James Pommersheim, and Jeffrey B. Remmel.
 Finding stable models via quantum computation.
 In International Workshop on Non-Monotonic Reasoning, 01 2004.
- [3] Fabrizio Riguzzi. Quantum Weighted Model Counting. In European Conference on Artificial Intelligence, 2019.