Solver Fast Prototyping
for Reduct-based ELP Semantics

Stefania Costantini Andrea Formisano
Universita de L’Aquila Universita di Udine

39th Italian Conference on Computational Logic
Rome, June 26-28, 2024

Answer Set Programming

An ASP program II is a collection of propositional rules of
the form
75 Al\/ \/AQ% Ll,.A.,L,,

e the A;s are atoms, the L;s are atoms or naf-literals

o the left-hand side and the right-hand side of r are called

head and body, resp.
e a rule with empty body is a fact
e arule with empty head is a constraint

Semantics of I1 is given in terms of answer sets

e a set M of atoms is an answer set for II if it is a minimal
model of the reduct IT”

o I1" obtained by deleting from II the rules in which a body
literal is false w.r.t. M

Epistemic Logic Programs

Extend ASP syntax:
» objective literals: those in “regular” ASP
» subjective literals of the form K L, for L objective literal

» subjective literals can occur in bodies of rules

Example:

a + notb
b < nota
e < notKf
f <+ notKe

Epistemic Logic Programs

Intuitive semantics:
» K L predicates on the truth of L in all answer sets of the program
other operators: ML (= notK notL) not L (= notK L)

>
> notion of epistemic interpretation, a set of sets of atoms
» and of world view, a set of answer sets of a program

>

a semantics S maps each program to a set of world views

The program
a < notb
b < nota
e < notKf
f < notKe

has 2 world views made of 2 answer sets each:

{a,e},{b,e}] {a.f},{b.f}]

K e is true in the first world view, K/ is true in the second one

Epistemic Logic Programs: which semantics?

Given a program I1 and an epistemic interpretation)V, the reduct 11" is
obtained from II by replacing each subjective literal K L

» with T if WW = L (i.e., Lis true in each set of 1)

» with L, otherwise

Then, V) is a world view of IT if it is the set of answer sets of 11"
Example: the program

a+ Ka

has 2 world views: [{}] and [{a}]

...the world view [{a}] appears somehow counterintuitive...

5

Epistemic Logic Programs: which semantics?

Given a program I and an epistemic interpretation)V, the reduct IT" is
obtained from II by

» replacing each subjective literal K L with | if VW (£ L
» remove all subjective literals of the form nor K L

» replacing each remaining subjective literal of the form K L with L

Then, }V is a world view of IT if it is the set of answer sets of 11"

Example: Now, the program

a+ Ka

has 1 world view: [{}]

but the story is not over...

Epistemic Logic Programs: which semantics?

Many other proposals

» K15: Kahl, Watson, Balai, Gelfond, Zhang, 2015
» S16: Shen and Eiter, 2016
» F15: Farifas del Cerro, Herzig, Su, 2015

» Su, 2019, 2021
» FAEEL: Cabalar, Fandinno, Farifias del Cerro, 2020

These semantics differ and meet different desirable properties...

Epistemic Logic Programs: which semantics?

Program World views
G9%4 | G11/FAEEL | K15 | F15/S16

a < notKnota 0], [{a}] [{a}]
- ot Kot fa]
avh ({a}], {a}, {b}] [{a}, {b}]
a <+ Knotb ’ ’ ’
a<+ b
b < notKnota [0], [{a, b}] [{a,b}]
a < notKnotb
b < notK nota [0], [{a,b}] [{a}, {b}]
a < notKnotb N\ notb
b < notKnota N\ nota 101, [{a}, {b}] [{a}, {b}]
a+ Ka L,)]]
a+ Ka
a <+ notKa [{a}] none

Epistemic Logic Programs: properties

Some “desirable” properties of ELP semantics
» Epistemic splitting property:
Reminiscent of splitting in ASP: an ELP can be split in fop/bottom parts
(w.r.t. epistemic operators) and world views can be computed
incrementally

» Subjective constraint monotonicity:
given I program and ¢ subjective constraint, it holds that
“W is a world view of TL U {c} iff W is a world view of T1 and W

satisfies c”.

» Foundedness:
[ntuition: Atoms occurring in sets within a world view cannot have
been derived via positive cyclic dependencies
For example semantics G94 does not meet foundedness: it admits [{a}]
as world view of the program a +— Ka
In such world view a is derived from the fact that K a holds in the
unique answer set {a}

Epistemic Logic Programs: another semantics!

A new reduct-based semantics
» consider subjective literals KA and K nor A as knowledge atoms
» an ELP Il is seen as an ASP program involving knowledge atoms

» CF24-adaptation of 1I w.r.t.)V is obtained by

e whenever V = G, in all non-unit rules with head G substitute head G
with K G, and add new rule G < K G
e whenever VW = not G, add new rule K nor G < not G

»)V is a CF24-world view of II if is the set of answer sets of the

CF24-adaptation of II w.r.t. W (ignoring knowledge atoms)

WORK IN PROGRESS:
assessing the properties of CF24, such as foundedness

ELP-solver fast prototyping

When looking for the “right” semantics, while designing/developing a new
one, or just to compare different semantics

» it might be useful to put candidate semantics to trial on simple examples
»> Do not want to implement a full-blown solver

» All reduct-based semantics for ELP share a “common characteristics”

Goal: design a generic solver pipeline that can be easily instantiated to
compute different reduct-based semantics

The ELP-solver pipeline

Let be given: a semantics S based on a notion R of reduct and (possibly)
requiring a post-processing P to filter the candidate world views (some
semantics impose additional minimality criterion)

The ELP-solver pipeline

Let be given: a semantics S based on a notion R of reduct and (possibly)
requiring a post-processing P to filter the candidate world views (some
semantics impose additional minimality criterion)

The procedure is composed of a sequence of modules

A module My that computes all epistemic interpretations WV, ..., Wy
for II (i.e., all sets of subsets of Afy)

A module M,,, that applies, for each V;, the reduct R to II, and
generates the reduct program I1;

A module M4sp that computes the set SMs; of answer sets [1;

In case a post-processing P is required, a module Mp applying P to
select the desired candidate SMs;’s;

A module M, that checks each SMs; and selects those which are world
views w.r.t. S (i.e., they coincide with the corresponding V)

The pipeline in ASP Chef

How to quickly implement the pipeline?

The pipeline in ASP Chef

How to quickly implement the pipeline?

using ASP Chef

The ASP Chef system
» Notion of , a sequence of

> Ingredients are instances of basic operations processing/producing a
> ...etc... the details in the tutorial by Mario Alviano

The notion of ASP Chef recipe matches the idea of ELP-solver pipeline

The recipe — input ELP encoding

» The input ELP program have to be encoded as a set of facts

» specific terms to represent K and naf-literals

e notL is represented by neqg (L)
e KL isrepresented by k (L)

» eachrule
A1\¢...Vf¥:€* Llw~-1Ln

is encoded as the fact

rule (head (Ay, ..., A,), body (L, ..

Example:

rule (head (a), body(neg(b))).
rule (head (b), body(neg(a))).
rule (head(e), body(neg(k(f)))).
rule (head(f), body(neg(k(e)))).

'ILII))‘

The recipe — main steps

The main steps/ingredients:

>

\4

extract, rule heads, rule bodies, atoms, objective and subjective literals
from input ELP encoding (h1it/1, blit/1, rule_body/2,
rule_head/2,...)

guess epistemic interpretations

detect epistemic consequences of each guessed epistemic interpretation
(modeledByW/1)

compute the reduct (w.r.t. an epistemic interpretation)
compute answer sets of the reduct

check if the epistemic interpretation is a world view

G9Y94 Semantics

A SEARCH MODELS ingredient evaluating the following ASP program
computes the G94-reduct by determining a rewriting of input ELP lits/rules

[

% detect ‘‘substitutes’’ for rule literals:

red_blit (k(L),true) :- blit (k(L)), modeledByW (L) .

red_blit (k (L), false) :— blit(k(L)), not modeledByW (L) .

red_blit (neg(L),neg(L)) :- blit(neg(L)), @functor (L) !="k".

red_blit(L,L) :- blit (L), @functor (L) !="neg",
@functor (L) !="k".

red_blit (neg(k (L)), false) :- blit (neg(k(L))), modeledByW (L) .

red_blit (neg(k(L)),true) :- blit(neg(k(L))), not modeledByW(L).

[

% reduced rules head and body literals

red_rule_head(rule(H,B), Qargument (H,I)) :- rule(H,B), I =
1..@arity (H).
red_rule_body (rule(H,B), R) :- rule_body(rule(H,B), L),

red_blit (L,R).

Computing answer sets of the reduct

A SEARCH MODELS ingredient evaluating the following ASP computes the

answer sets of a reduct program

% detect falsified reduced rules bodies:
red_body_false (R) :- red_rule_body (R, false).

% infer true literals w.r.t. reduced rules
true (L) : red_rule_head(rule(H,B),L) :-—
rule (H,B), ~not red_body_false (rule (H,B));

true (N) :red_rule_body (rule(H,B),N), @functor(N) !="neg",

Q@functor (N) !="true";

not true (M) :red_rule_body (rule (H,B),neg(M)),
@functor (M) !="neg", @functor (M) !="false";

not not true (M) :red_rule_body (rule (H,B) ,neg(neg(M))),
@functor (M) !="false".

G11 Semantics

A SEARCH MODELS ingredient evaluating the following ASP program
computes the G11-reduct

o

% detect ‘‘substitutes’’ for rule literals:

red_blit (k (L), false) :- blit(k(L)), not modeledByW (L) .
red_blit (neg(k (L)), false) :— blit(neg(k(L))), modeledByW(L).
red_blit (neg(k (L)), true) :- blit (neg(k(L))),
not modeledByW (Rargument (@argument (L,1),1)) .
red_blit(k(L),L) :- blit(k(L)), modeledByW(L).
red_blit (neg(L),neg(L)) :- blit(neg(L)), @functor (L) !="k".
red_blit (L,L) :- blit (L), @functor (L) !="neg",
@functor (L) !'="k".

[

% reduced rules head and body literals (same as G94):

red_rule_head(rule(H,B), Qargument(H,I)) :- rule(H,B), I =
1..@arity (H).
red_rule_body (rule (H,B), R) :- rule_body(rule(H,B), L),

red_blit (L,R).

20

K15 Semantics

A SEARCH MODELS ingredient evaluating the following ASP program
computes the K15-reduct

% detect ‘‘substitutes’’ for rule literals:

red_blit (k (L), false) :— blit(k (L)), not modeledByW (L) .

red_blit (neg(k(L)),true) :- blit(neg(k(L))), not modeledByW(L) .

red_blit (neg(k (neg(L))),neg(neg(L))) :- blit (neg(k(neg(L)))),
modeledByW (neg (L)) .

red_blit (k(L),L) :- blit(k(L)), modeledByW(L).

red_blit (neg(k(L)),neg(L)) :- blit(neg(k(L))),
@functor (L) !="neg", modeledByW (L) .

red_blit (neg(L),neg(L)) :- blit(neg(L)), Q@functor (L) !="k".

red_blit (L,L) :- blit (L), @functor (L) !="neg",
@functor (L) !'="k".

[

% reduced rules head and body literals (same as G94):

red_rule_head(rule(H,B), Qargument(H,I)) :- rule(H,B), I =
1..@arity (H).
red_rule_body (rule(H,B), R) :- rule_body(rule(H,B), L),

red_blit (L,R).

o

CF24 Semantics

The following ASP program computes the CF24-reduct

red_blit (k(neg(L)),knowN(L)) :— blit(k(neg(L))).
red_blit (k(L),knowP (L)) :- blit(k(L)), Q@functor (L) !="neg".
red_blit (neg(L),neg(L)) :- blit(neg(L)), Q@functor (L) !="k".
red_blit(L,L) :- blit(L), @functor(L) !="neg", @functor (L) !="k".
red_blit (neg(k (L)), neg(knowP (L))) :—blit (neg(k(L))),red_blit (k(L),knowP (L)) .
red_blit (neg(k (L)), neg(knowN(L))) :—blit (neg(k(L))),red blit (k(L),knowN(L)).
red_hlit (A, knowP (A)) :- hlit (A), modeledByW(A).
red_hlit (A,A) :- hlit(A), not modeledByW(A) .
nonunit (R) :- rule_body (R, L), L!=true.
changehead (rule (H,B)) :- nonunit (rule(H,B)), I=1..Qarity (H)
L=Qargument (H,I), Q@functor (L) !="neg",modeledByW (L) .
red_rule_head(rule (H,B), knowP (L)) :- changehead(rule(H,B)),
.@arity (H), L=@argument (H,I), Q@functor (L) !="neg",modeledByW (L) .
red_rule_head(rule (H,B), @argument(H,I)) :- rule(H,B), I=1..Qarity(H),
not changehead(rule (H,B)) .
red_rule_body (rule(H,B), R) :- rule_body(rule(H,B), L), red blit(L,R).
rule (head (L) ,body (knowP (L))) :— modeledByW (L), @functor (L) !="neg".
red_rule_head(rule (head (L) ,body (knowP (L))),L) :- modeledByW(L),
Q@functor (L) !="neg".
red_rule_body (rule (head (L) ,body (knowP (L))) , knowP (L)) :— modeledByW(L),
@functor (L) !="neg"
)) :— modeledByW(neg (L)) .

red_rule_head (rule (head (knowN

rule (head (knowN (L)), body(neg(L
(
red_rule_body (rule (head (knowN (

)
L)) ,body (neg (L))), knowN (L)) : -modeledByW (neg (L
L)) ,body (neg(L))),neg (L)) :-modeledByW (neg (L

Conclusion

Many semantics exists for ELP, no consensus

some meet desirable properties (many do not)

>
>
» many are defined by introducing a notion of (epistemic) reduct
» our own proposal for a (founded) reduct-based semantics

» fast ELP-solver pipeline

>

prototype implementation of the pipeline in ASP Chef

Next/current work?
» improve the ASP Chef implementation

» improve efficiency (use of epistemic guesses, i.e., epistemic literals
holding in a world view)

» other semantics not (directly) based on a notion of reduct?

> complete the study of CF24, its relation with other semantics,
properties it satisfies, ...

> ..

