
Solver Fast Prototyping
for Reduct-based ELP Semantics

Stefania Costantini Andrea Formisano
Università de L’Aquila Università di Udine

39th Italian Conference on Computational Logic
Rome, June 26–28, 2024

1



Answer Set Programming

Syntax
An ASP program Π is a collection of propositional rules of
the form
r : A1 ∨ . . . ∨ Ag ← L1, . . . ,Ln

• the Ais are atoms, the Ljs are atoms or naf-literals
• the left-hand side and the right-hand side of r are called

head and body, resp.
• a rule with empty body is a fact
• a rule with empty head is a constraint

Semantics
Semantics of Π is given in terms of answer sets
• a set M of atoms is an answer set for Π if it is a minimal

model of the reduct ΠM

• ΠM obtained by deleting from Π the rules in which a body
literal is false w.r.t. M

2



Epistemic Logic Programs

Extend ASP syntax:
▶ objective literals: those in “regular” ASP
▶ subjective literals of the form K L, for L objective literal
▶ subjective literals can occur in bodies of rules

Example:

a← not b
b← not a
e← not K f
f ← not K e

3



Epistemic Logic Programs

Intuitive semantics:
▶ K L predicates on the truth of L in all answer sets of the program
▶ other operators: ML (≡ not K not L) not L (≡ not K L)
▶ notion of epistemic interpretation, a set of sets of atoms
▶ and of world view, a set of answer sets of a program
▶ a semantics S maps each program to a set of world views

The program
a← not b
b← not a
e← not K f
f ← not K e

has 2 world views made of 2 answer sets each:
[{a, e}, {b, e}] [{a, f}, {b, f}]

K e is true in the first world view, K f is true in the second one

4



Epistemic Logic Programs: which semantics?

Definition (Epistemic reduct [Gelfond 1991,1994])
Given a program Π and an epistemic interpretationW , the reduct ΠW is
obtained from Π by replacing each subjective literal K L
▶ with ⊤ ifW |= L (i.e., L is true in each set ofW)
▶ with ⊥, otherwise

Then,W is a world view of Π if it is the set of answer sets of ΠW

Example: the program

a← K a

has 2 world views: [{}] and [{a}]

...the world view [{a}] appears somehow counterintuitive...

5



Epistemic Logic Programs: which semantics?

Definition (Epistemic reduct [Gelfond 2011])
Given a program Π and an epistemic interpretationW , the reduct ΠW is
obtained from Π by
▶ replacing each subjective literal K L with ⊥ ifW ̸|= L
▶ remove all subjective literals of the form not K L
▶ replacing each remaining subjective literal of the form K L with L

Then,W is a world view of Π if it is the set of answer sets of ΠW

Example: Now, the program

a← K a

has 1 world view: [{}]

but the story is not over...
6



Epistemic Logic Programs: which semantics?

Many other proposals

▶ K15: Kahl, Watson, Balai, Gelfond, Zhang, 2015
▶ S16: Shen and Eiter, 2016
▶ F15: Fariñas del Cerro, Herzig, Su, 2015

▶ Su, 2019, 2021
▶ FAEEL: Cabalar, Fandinno, Fariñas del Cerro, 2020

These semantics differ and meet different desirable properties...

7



Epistemic Logic Programs: which semantics?

Program World views
G94 G11/FAEEL K15 F15/S16

a← not K not a [∅], [{a}] [{a}]
a ∨ b
a← not K not b

none [{a}]

a ∨ b
a← K not b

[{a}], [{a}, {b}] [{a}, {b}]

a← b
b← not K not a

[∅], [{a, b}] [{a, b}]

a← not K not b
b← not K not a

[∅], [{a, b}] [{a}, {b}]

a← not K not b ∧ not b
b← not K not a ∧ not a

[∅], [{a}, {b}] [{a}, {b}]

a← K a [∅], [{a}] [∅]
a← K a
a← not K a

[{a}] none

8



Epistemic Logic Programs: properties

Some “desirable” properties of ELP semantics
▶ Epistemic splitting property:

Reminiscent of splitting in ASP: an ELP can be split in top/bottom parts
(w.r.t. epistemic operators) and world views can be computed
incrementally

▶ Subjective constraint monotonicity:
given Π program and c subjective constraint, it holds that
“W is a world view of Π ∪ {c} iffW is a world view of Π andW
satisfies c”.

▶ Foundedness:
Intuition: Atoms occurring in sets within a world view cannot have
been derived via positive cyclic dependencies
For example semantics G94 does not meet foundedness: it admits [{a}]
as world view of the program a← K a
In such world view a is derived from the fact that K a holds in the
unique answer set {a}

9



Epistemic Logic Programs: another semantics!

A new reduct-based semantics

▶ consider subjective literals K A and K not A as knowledge atoms

▶ an ELP Π is seen as an ASP program involving knowledge atoms

▶ CF24-adaptation of Π w.r.t.W is obtained by
• wheneverW |= G, in all non-unit rules with head G substitute head G

with K G, and add new rule G← K G
• wheneverW |= not G, add new rule K not G← not G

▶ W is a CF24-world view of Π if is the set of answer sets of the
CF24-adaptation of Π w.r.t.W (ignoring knowledge atoms)

WORK IN PROGRESS:
assessing the properties of CF24, such as foundedness

10



ELP-solver fast prototyping

When looking for the “right” semantics, while designing/developing a new
one, or just to compare different semantics

▶ it might be useful to put candidate semantics to trial on simple examples
▶ Do not want to implement a full-blown solver
▶ All reduct-based semantics for ELP share a “common characteristics”

Goal: design a generic solver pipeline that can be easily instantiated to
compute different reduct-based semantics

11



The ELP-solver pipeline

Let be given: a semantics S based on a notionR of reduct and (possibly)
requiring a post-processing P to filter the candidate world views (some
semantics impose additional minimality criterion)

The procedure is composed of a sequence of modules
1. A module MW that computes all epistemic interpretationsW1, . . . ,Wk

for Π (i.e., all sets of subsets of AtΠ)
2. A module Mred that applies, for eachWi, the reductR to Π, and

generates the reduct program Πi

3. A module MASP that computes the set SMsi of answer sets Πi

4. In case a post-processing P is required, a module MP applying P to
select the desired candidate SMsi’s;

5. A module Mchk that checks each SMsi and selects those which are world
views w.r.t. S (i.e., they coincide with the correspondingWi)

12



The ELP-solver pipeline

Let be given: a semantics S based on a notionR of reduct and (possibly)
requiring a post-processing P to filter the candidate world views (some
semantics impose additional minimality criterion)

The procedure is composed of a sequence of modules
1. A module MW that computes all epistemic interpretationsW1, . . . ,Wk

for Π (i.e., all sets of subsets of AtΠ)
2. A module Mred that applies, for eachWi, the reductR to Π, and

generates the reduct program Πi

3. A module MASP that computes the set SMsi of answer sets Πi

4. In case a post-processing P is required, a module MP applying P to
select the desired candidate SMsi’s;

5. A module Mchk that checks each SMsi and selects those which are world
views w.r.t. S (i.e., they coincide with the correspondingWi)

13



The pipeline in ASP Chef

How to quickly implement the pipeline?

using ASP Chef

The ASP Chef system
▶ Notion of recipe, a sequence of ingredients
▶ Ingredients are instances of basic operations processing/producing a

sequence of sets of atoms
▶ ... etc ... the details in the tutorial by Mario Alviano

The notion of ASP Chef recipe matches the idea of ELP-solver pipeline

14



The pipeline in ASP Chef

How to quickly implement the pipeline?

using ASP Chef

The ASP Chef system
▶ Notion of recipe, a sequence of ingredients
▶ Ingredients are instances of basic operations processing/producing a

sequence of sets of atoms
▶ ... etc ... the details in the tutorial by Mario Alviano

The notion of ASP Chef recipe matches the idea of ELP-solver pipeline

15



The recipe — input ELP encoding

▶ The input ELP program have to be encoded as a set of facts

▶ specific terms to represent K and naf -literals
• not L is represented by neg(L)
• K L is represented by k(L)

▶ each rule
A1 ∨ . . . ∨ Ag ← L1, . . . ,Ln

is encoded as the fact
rule(head(A1,...,Ag), body(L1,...,Ln)).

Example:
rule(head(a), body(neg(b))).
rule(head(b), body(neg(a))).
rule(head(e), body(neg(k(f)))).
rule(head(f), body(neg(k(e)))).

16



The recipe — main steps

The main steps/ingredients:
▶ extract, rule heads, rule bodies, atoms, objective and subjective literals

from input ELP encoding (hlit/1, blit/1, rule_body/2,

rule_head/2,...)

▶ guess epistemic interpretations
▶ detect epistemic consequences of each guessed epistemic interpretation

(modeledByW/1)

▶ compute the reduct (w.r.t. an epistemic interpretation)
▶ compute answer sets of the reduct
▶ check if the epistemic interpretation is a world view

17



G94 Semantics

A SEARCH MODELS ingredient evaluating the following ASP program
computes the G94-reduct by determining a rewriting of input ELP lits/rules

% detect ‘‘substitutes’’ for rule literals:
red_blit(k(L),true) :- blit(k(L)), modeledByW(L).
red_blit(k(L),false) :- blit(k(L)), not modeledByW(L).
red_blit(neg(L),neg(L)) :- blit(neg(L)), @functor(L)!="k".
red_blit(L,L) :- blit(L), @functor(L)!="neg",

@functor(L)!="k".
red_blit(neg(k(L)),false) :- blit(neg(k(L))), modeledByW(L).
red_blit(neg(k(L)),true) :- blit(neg(k(L))), not modeledByW(L).

% reduced rules head and body literals :
red_rule_head(rule(H,B), @argument(H,I)) :- rule(H,B), I =

1..@arity(H).
red_rule_body(rule(H,B), R) :- rule_body(rule(H,B), L),

red_blit(L,R).

18



Computing answer sets of the reduct

A SEARCH MODELS ingredient evaluating the following ASP computes the
answer sets of a reduct program

% detect falsified reduced rules bodies:
red_body_false(R) :- red_rule_body(R,false).

% infer true literals w.r.t. reduced rules
true(L):red_rule_head(rule(H,B),L) :-

rule(H,B),~not red_body_false(rule(H,B));
true(N):red_rule_body(rule(H,B),N), @functor(N)!="neg",

@functor(N)!="true";
not true(M):red_rule_body(rule(H,B),neg(M)),

@functor(M)!="neg", @functor(M)!="false";
not not true(M):red_rule_body(rule(H,B),neg(neg(M))),

@functor(M)!="false".

19



G11 Semantics

A SEARCH MODELS ingredient evaluating the following ASP program
computes the G11-reduct

% detect ‘‘substitutes’’ for rule literals:
red_blit(k(L),false) :- blit(k(L)), not modeledByW(L).
red_blit(neg(k(L)),false) :- blit(neg(k(L))), modeledByW(L).
red_blit(neg(k(L)),true) :- blit(neg(k(L))),

not modeledByW(@argument(@argument(L,1),1)).
red_blit(k(L),L) :- blit(k(L)), modeledByW(L).
red_blit(neg(L),neg(L)) :- blit(neg(L)), @functor(L)!="k".
red_blit(L,L) :- blit(L), @functor(L)!="neg",

@functor(L)!="k".

% reduced rules head and body literals (same as G94):
red_rule_head(rule(H,B), @argument(H,I)) :- rule(H,B), I =

1..@arity(H).
red_rule_body(rule(H,B), R) :- rule_body(rule(H,B), L),

red_blit(L,R).

20



K15 Semantics

A SEARCH MODELS ingredient evaluating the following ASP program
computes the K15-reduct

% detect ‘‘substitutes’’ for rule literals:
red_blit(k(L),false) :- blit(k(L)), not modeledByW(L).
red_blit(neg(k(L)),true) :- blit(neg(k(L))), not modeledByW(L).
red_blit(neg(k(neg(L))),neg(neg(L))) :- blit(neg(k(neg(L)))),

modeledByW(neg(L)).
red_blit(k(L),L) :- blit(k(L)), modeledByW(L).
red_blit(neg(k(L)),neg(L)) :- blit(neg(k(L))),

@functor(L)!="neg", modeledByW(L).
red_blit(neg(L),neg(L)) :- blit(neg(L)), @functor(L)!="k".
red_blit(L,L) :- blit(L), @functor(L)!="neg",

@functor(L)!="k".

% reduced rules head and body literals (same as G94):
red_rule_head(rule(H,B), @argument(H,I)) :- rule(H,B), I =

1..@arity(H).
red_rule_body(rule(H,B), R) :- rule_body(rule(H,B), L),

red_blit(L,R).

21



CF24 Semantics

The following ASP program computes the CF24-reduct
red_blit(k(neg(L)),knowN(L)) :- blit(k(neg(L))).
red_blit(k(L),knowP(L)) :- blit(k(L)), @functor(L)!="neg".
red_blit(neg(L),neg(L)) :- blit(neg(L)), @functor(L)!="k".
red_blit(L,L) :- blit(L), @functor(L)!="neg", @functor(L)!="k".
red_blit(neg(k(L)),neg(knowP(L))):-blit(neg(k(L))),red_blit(k(L),knowP(L)).
red_blit(neg(k(L)),neg(knowN(L))):-blit(neg(k(L))),red_blit(k(L),knowN(L)).
red_hlit(A,knowP(A)) :- hlit(A), modeledByW(A).
red_hlit(A,A) :- hlit(A), not modeledByW(A).
nonunit(R) :- rule_body(R, L), L!=true.
changehead(rule(H,B)) :- nonunit(rule(H,B)), I=1..@arity(H),

L=@argument(H,I), @functor(L)!="neg",modeledByW(L).

red_rule_head(rule(H,B), knowP(L)) :- changehead(rule(H,B)),
I=1..@arity(H), L=@argument(H,I), @functor(L)!="neg",modeledByW(L).

red_rule_head(rule(H,B), @argument(H,I)) :- rule(H,B), I=1..@arity(H),
not changehead(rule(H,B)).

red_rule_body(rule(H,B), R) :- rule_body(rule(H,B), L), red_blit(L,R).
rule(head(L),body(knowP(L))) :- modeledByW(L), @functor(L)!="neg".
red_rule_head(rule(head(L),body(knowP(L))),L) :- modeledByW(L),

@functor(L)!="neg".
red_rule_body(rule(head(L),body(knowP(L))),knowP(L)) :- modeledByW(L),

@functor(L)!="neg".
rule(head(knowN(L)),body(neg(L))) :- modeledByW(neg(L)).
red_rule_head(rule(head(knowN(L)),body(neg(L))),knowN(L)):-modeledByW(neg(L)).
red_rule_body(rule(head(knowN(L)),body(neg(L))),neg(L)):-modeledByW(neg(L)).

22



Conclusion

▶ Many semantics exists for ELP, no consensus
▶ some meet desirable properties (many do not)
▶ many are defined by introducing a notion of (epistemic) reduct
▶ our own proposal for a (founded) reduct-based semantics
▶ fast ELP-solver pipeline
▶ prototype implementation of the pipeline in ASP Chef

Next/current work?
▶ improve the ASP Chef implementation
▶ improve efficiency (use of epistemic guesses, i.e., epistemic literals

holding in a world view)
▶ other semantics not (directly) based on a notion of reduct?
▶ complete the study of CF24, its relation with other semantics,

properties it satisfies, ...
▶ ...

23


