Typicality, Conditionals and a Probabilistic Semantics for Gradual Argumentation

Mario Alviano¹ Laura Giordano² Daniele Theseider Dupré²

1 Università della Calabria, Italy

2 Università del Piemonte Orientale Italy

CILC 2024, Roma, June 25-28

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Aims of the talk

Argumentation is one of the major formalisms used for explainability.

- We propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics.
- Conditional reasoning over arguments and boolean combination of arguments through the verification of graded (strict or defeasible) implications over a preferential interpretation.
- We also discuss a probabilistic interpretation for gradual argumentation, which builds on the many-valued preferential semantics.

(ロ) (同) (三) (三) (三) (○) (○)

The approach

Given an *argumentation graph G* and a *gradual semantics S*, satisfying *weak conditions on the domain* of argument interpretation, we consider:

- a many-valued propositional logic with typicality, where arguments play the role of propositional variables (inspired to PTL and DLs with typicality)
- graded conditionals of the form T(α) → β ≥ l, meaning that "normally argument α implies argument β with degree at least l" (with α and β boolean combination of arguments):

 $T(granted_loan) \rightarrow high_salary \land young \ge 0.7$

Build a multi-preferential interpretation of a graph G under a semantic S, I^S_G

 Verification of conditional properties over I^S_G by model checking Domain of argument interpretation and argumentation graphs: some assumptions

- We let the *domain of argument interpretation* be a set D, equipped with a *preorder relation* ≤ [Baroni et al. 2019]
- ► Let a *(weighted) argumentation graph* be a tuple:

 $\pmb{G} = \langle \mathcal{A}, \mathcal{R}, \sigma_{\pmb{0}}, \pi \rangle$

- A is a set of *arguments*,
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ a set of *edges*,
- $\sigma_0 : \mathcal{A} \to \mathcal{D}$ assigns a *base score* of arguments,
- $\pi : \mathcal{R} \to \mathbb{R}$ is a *weight function* assigning a positive or negative weight to edges.

A pair $(B, A) \in \mathcal{R}$ is regarded as a *support* of argument *B* to argument *A* when the weight $\pi(B, A)$ is positive and as an *attack* of argument *B* to *A* when $\pi(B, A)$ is negative.

Labellings and gradual semantics

Figure: Example weighted argumentation graph *G* where the base score is not represented

- A labelling σ of G over D is a function σ : A → D, which assigns to each argument an acceptability degree (or a strength) in D.
- A gradual semantics S for an argumentation graph G identifies a set Σ^S of labellings of the graph G over a domain of argument valuation D.

Example

- φ -coherent semantics [NMR 2022];
- \mathcal{D} equal to $\mathcal{C}_n = \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}.$
- With n = 5, the graph G has 36 φ-coherent labellings, while, for n = 9, G has 100 φ-coherent labellings.
- For instance, $\sigma = (0, 4/5, 3/5, 2/5, 2/5, 3/5)$ (meaning that $\sigma(A_1) = 0, \sigma(A_2) = 4/5$, and so on) is a labelling for n = 5.

A many valued logic (of arguments)

- Given an argumentation graph G = (A, R, σ₀, π), we introduce a *propositional language* L, whose set of propositional variables *Prop is the set of arguments* A.
- Language L contains the boolean connectives ∧, ∨, ¬ and →, and that formulas are defined inductively, as usual.
- $\blacktriangleright \mathcal{D}$ is the *truth degree set*.
- We let ⊗, ⊕, ▷ and ⊖ be the *truth degree functions* in D for the connectives ∧, ∨, ¬ and → (respectively).
 - ► E.g., when D is [0, 1] or C_n, ⊗, ⊕, ▷ and ⊖ can be a t-norm, s-norm, implication function, and negation function in some system of many-valued logic.

Labellings as many-valued valuations

- A labelling *σ* : *A* → *D* of graph *G*, assigning to each argument *A_i* ∈ *A* a truth degree in *D*, as a *many-valued valuation*.
- ► σ is extended to all propositional formulas of \mathcal{L} : $\sigma(\alpha \land \beta) = \sigma(\alpha) \otimes \sigma(\beta)$ $\sigma(\alpha \lor \beta) = \sigma(\alpha) \oplus \sigma(\beta)$ $\sigma(\alpha \to \beta) = \sigma(\alpha) \triangleright \sigma(\beta)$ $\sigma(\neg \alpha) = \ominus \sigma(\alpha)$
- A labelling σ uniquely assigns a truth degree to any boolean combination of arguments.

(日) (日) (日) (日) (日) (日) (日)

We assume that the false argument ⊥ and the true argument ⊤ are formulas of *L* and that σ(⊥) = 0_D and σ(⊤) = 1_D, for all labellings σ.

Preferences over labellings in Σ

► Given a set of labellings Σ , we define a *preference relation* $<_{A_i}$ on Σ , for each argument $A_i \in A$:

 $\sigma <^{\Sigma}_{A_i} \sigma' \text{ iff } \sigma'(A_i) < \sigma(A_i), \text{ for } \sigma, \sigma' \in \Sigma$

 σ is more plausible than σ' as a situation for argument A_i to holds.

- The preference relation <^Σ_{A_i} is a *strict partial order relation* on Σ. We write <_{A_i}. We restrict to sets of labellings such that <_{A_i} and <_{¬A_i} are *well-founded*.
- Similarly, for boolean combinations of arguments α :

$$\sigma <_{\alpha} \sigma' \text{ iff } \sigma'(\alpha) < \sigma(\alpha).$$

For example, σ = (1, 4/5, 0, 1, 1/5, 1) is preferred to all other labellings with respect to <_{A₆}, being the only one with σ(A₆) = 1.

Preferences with respect to arguments

A multi-preferential interpretation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A many-valued logic with typicality

- Given an argumentation graph *G*, a gradual semantics *S* with domain of argument valuation *D*, and the set of labellings Σ^S of *G* wrt *S*, we let the preferential interpretation of *G* wrt *S* to be the pair *I*^S_G = (*D*, Σ^S, {<_α}).
- Language L^T is obtained by extending L with a unary typicality operator T. Intuitively, "a sentence of the form T(α) is understood to refer to the typical situations in which α holds" [Booth et al., 2019]
- The typicality operator allows the formulation of *conditional implications* (or *defeasible implications*) of the form T(α) → β, "normally, if α then β"
- As in PTL also general implications α → β, where α and β may contain T

A many-valued logic with typicality

Given a preferential interpretation *I* = (D, Σ), and a labelling σ ∈ Σ, the valuation of a propositional formula T(α) in σ is defined as follows:

 $\sigma(\mathbf{T}(\alpha)) = \begin{cases} \sigma(\alpha) & \text{if there is no } \sigma' \text{ such that } \sigma' <_{\alpha} \sigma \\ \mathbf{0}_{\mathcal{D}} & \text{otherwise} \end{cases}$ (1)

When σ(T(A)) > 0_D, σ is a labelling maximizing the acceptability of argument A, among all the labellings in I.

Example

Under Gödel logic with standard involutive negation with n = 5, the boolean combination of arguments $A_1 \wedge A_2 \wedge \neg A_3$ has 4 maximally preferred labellings, with $\sigma(A_1 \wedge A_2 \wedge \neg A_3) = 4/5$. For such labellings, $\sigma(\mathbf{T}(A_1 \wedge A_2 \wedge \neg A_3)) = 4/5$, while equal to 0 for all other labellings.

Labellings and gradual semantics

A multi-preferential interpretation

We may check, for instance:

 $T(granted_loan) \rightarrow high_salary \land being_young \ge 0.7$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Graded implications

- Given a preferential interpretation *I* = (D, Σ), we can now define the satisfiability in *I* of a *graded implication*, having form α → β ≥ *I* or α → β ≤ u, with *I* and u in D and α and β boolean combination of arguments.
- the truth degree of an implication $\alpha \rightarrow \beta$ wrt. I is defined as:

$$(\alpha \to \beta)^{I} = \inf_{\sigma \in \Sigma} (\sigma(\alpha) \rhd \sigma(\beta)).$$

▶ *I satisfies a graded implication* $\alpha \rightarrow \beta \ge t$ (written $I \models \alpha \rightarrow \beta \ge t$) iff $(\alpha \rightarrow \beta)^I \ge t$;

I satisfies a graded implication $\alpha \rightarrow \beta \leq u$ (written $I \models \alpha \rightarrow \beta \leq u$) iff $(\alpha \rightarrow \beta)^I \leq u$.

Graded implications:example

The following graded conditionals are among the ones satisfied in the preferential interpretation *I* = (C₅, Σ, {<_α}), under the φ-coherent semantics:

 $\mathbf{T}(A_1 \land A_2 \land \neg A_3) \to A_6 \geq 1$

(with 4 preferred labellings);

 $\mathbf{T}(A_1 \land A_2) \rightarrow A_6 \ge 4/5$ (12 preferred labellings); $\mathbf{T}(A_6) \rightarrow A_1 \land A_2 \ge 4/5$ (1 preferred labelling).

Properties

Given an interpretation $I^{S} = (S, \Sigma^{S})$, associated with an argumentation semantics *S* of a graph *G*:

Under the choice of combination functions as in Gödel logic, interpretation I^S = (S, Σ^S) satisfies the *KLM postulates* of a preferential consequence relation, suitably reformulated:

 $\alpha \succ \beta$ is interpreted as $\mathbf{T}(\alpha) \rightarrow \beta \ge 1$ $\models \mathbf{A} \rightarrow \mathbf{B}$ is interpreted as $\alpha \rightarrow \beta \ge 1$

For a *finite* interpretation I^S = (S, Σ^S), *satisfiability* of a graded conditional T(α) → β ≥ k in I^S can be decided in *polynomial time* in the product of the size of the interpretation and the size of the formula.

Towards a probabilistic semantics of gradual argumentation

- The fuzzy interpretation of arguments also suggests a probabilistic semantics of gradual argumentation, based on Zadeh's probability of fuzzy events [Zadeh1968].
- An approach previously considered for SOMs [JLC2022].
- Consider the set Σ^S of labellings of G in a gradual semantics S, with *domain of argument valuation in* [0, 1], and a suitable (continuous) t-norm [Montes et al, 2013].
- Assuming a discrete probability distribution p : Σ^S → [0, 1] over a set Σ^S one can define the *probability of a boolean combination of arguments* α as:

$$P(\alpha) = \sum_{\sigma \in \Sigma^S} \sigma(\alpha) \ p(\sigma)$$

When the labellings are two-valued ($\sigma(\alpha)$ is 0 or 1), this definition relates to the probability of a boolean term α by Hunter and Thimm [2020].

Towards a probabilistic semantics of gradual argumentation

We let the conditional probability of A given B, where A and B are boolean combinations of arguments, to be

$$P(A \mid B) = P(A \land B) / P(B)$$

(provided P(B) > 0).

- As observed by Dubois and Prade [1993], this generalizes both conditional probability and the fuzzy inclusion index advocated by Kosko [1992].
- ► Let us extend the language L^{T} by introducing a new proposition $\{\sigma\}$, for each $\sigma \in \Sigma$ (with $\sigma(\{\sigma\}) = 1$ and $\sigma'(\{\sigma\}) = 0$, for any $\sigma' \neq \sigma$). Then

 $\boldsymbol{P}(\boldsymbol{A}|\{\sigma\}) = \sigma(\boldsymbol{A})$

which can be regarded as a *subjective probability* (i.e., the degree of belief we put into *A* when we are in a state represented by labelling σ).

Towards a probabilistic semantics of gradual argumentation

- The notion of probability *P* defined satisfies Kolmogorov's axioms for any *P_Z*-compatible t-norm, with associated t-conorm, and the negation function ⊖*x* = 1 − *x* [Montes2013].
- But, there are properties of classical probability which do not hold (depending on the choice of t-norm), as a consequence of the fact that not all classical logic equivalences hold in a fuzzy logic.

Conclusions and Related work

- We have proposed an approach for defeasible reasoning over argumentation graphs.
- As a case of study, for the φ-coherent semantics in the finite valued case, the approach has been implemented through an ASP encoding [ASPOCP 2023]

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

FW: the use of this formalism for explanation

Related work

- Weydert [2013] has proposed one of the first approaches for combining abstract argumentation with a conditional semantics. He has proposed the JZ-evaluation semantics.
- The correspondence between Abstract Dialectical Frameworks (Brewka2013) and Conditional Logics have been studied by Heyninck, Kern-Isberner and Thimm [FLAIRS2020].
- In the work by Skiba and Thimm [2022] Ordinal Conditional Functions (OCFs) are interpreted and formalized for Abstract Argumentation, by developing a framework that allows to rank sets of arguments wrt. their plausibility. They propose an OCF inspired by System Z ranking function.
- Thimm's probabilistic semantics for AF [ECAI 2012]
- Epistemic graphs [Hunter, Pollberg, Thimm 2021] allow epistemic constraints involving statements about probabilities (we have not considered them so far).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Thank you!!!!!