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Aims of the talk

Argumentation is one of the major formalisms used for
explainability.
I We propose a general approach to define a many-valued

preferential interpretation of gradual argumentation
semantics.

I Conditional reasoning over arguments and boolean
combination of arguments through the verification of graded
(strict or defeasible) implications over a preferential
interpretation.

I We also discuss a probabilistic interpretation for gradual
argumentation, which builds on the many-valued
preferential semantics.



The approach

Given an argumentation graph G and a gradual semantics S,
satisfying weak conditions on the domain of argument
interpretation, we consider:
I a many-valued propositional logic with typicality, where

arguments play the role of propositional variables (inspired
to PTL and DLs with typicality)

I graded conditionals of the form T(α)→ β ≥ l , meaning that
“normally argument α implies argument β with degree at
least l” (with α and β boolean combination of arguments):

T(granted loan)→ high salary ∧ young ≥ 0.7

I Build a multi-preferential interpretation of a graph G under a
semantic S,IS

G

I Verification of conditional properties over IS
G by model

checking



Domain of argument interpretation and argumentation
graphs: some assumptions

I We let the domain of argument interpretation be a set D,
equipped with a preorder relation ≤ [Baroni et al. 2019]

I Let a (weighted) argumentation graph be a tuple:

G = 〈A,R, σ0, π〉
- A is a set of arguments,
- R ⊆ A×A a set of edges,
- σ0 : A → D assigns a base score of arguments,
- π : R → R is a weight function assigning a positive or

negative weight to edges.

A pair (B,A) ∈ R is regarded as a support of argument B to
argument A when the weight π(B,A) is positive and as an
attack of argument B to A when π(B,A) is negative.



Labellings and gradual semantics

Figure: Example weighted argumentation graph G where the base
score is not represented

I A labelling σ of G over D is a function σ : A → D, which
assigns to each argument an acceptability degree (or a
strength) in D.

I A gradual semantics S for an argumentation graph G
identifies a set ΣS of labellings of the graph G over a
domain of argument valuation D.



Example

I ϕ-coherent semantics [NMR 2022];

I D equal to Cn = {0, 1
n , . . . ,

n−1
n ,1}.

I With n = 5, the graph G has 36 ϕ-coherent labellings, while,
for n = 9, G has 100 ϕ-coherent labellings.

I For instance, σ = (0, 4/5, 3/5, 2/5, 2/5, 3/5) (meaning that
σ(A1) = 0, σ(A2) = 4/5, and so on) is a labelling for n = 5.



A many valued logic (of arguments)

I Given an argumentation graph G = 〈A,R, σ0, π〉, we
introduce a propositional language L, whose set of
propositional variables Prop is the set of arguments A.

I Language L contains the boolean connectives ∧, ∨, ¬ and
→, and that formulas are defined inductively, as usual.

I D is the truth degree set.
I We let ⊗, ⊕, � and 	 be the truth degree functions in D for

the connectives ∧, ∨, ¬ and→ (respectively).
I E.g., when D is [0,1] or Cn, ⊗, ⊕, � and 	 can be a t-norm,

s-norm, implication function, and negation function in some
system of many-valued logic.



Labellings as many-valued valuations

I A labelling σ : A → D of graph G, assigning to each
argument Ai ∈ A a truth degree in D, as a many-valued
valuation.

I σ is extended to all propositional formulas of L:
σ(α ∧ β) = σ(α)⊗ σ(β) σ(α ∨ β) = σ(α)⊕ σ(β)
σ(α→ β) = σ(α) � σ(β) σ(¬α) = 	σ(α)

I A labelling σ uniquely assigns a truth degree to any boolean
combination of arguments.

I We assume that the false argument ⊥ and the true
argument > are formulas of L and that σ(⊥) = 0D and
σ(>) = 1D, for all labellings σ.



Preferences over labellings in Σ

I Given a set of labellings Σ, we define a preference relation
<Ai on Σ, for each argument Ai ∈ A:

σ <Σ
Ai
σ′ iff σ′(Ai) < σ(Ai), for σ, σ′ ∈ Σ

σ is more plausible than σ′ as a situation for argument Ai to
holds.

I The preference relation <Σ
Ai

is a strict partial order relation
on Σ. We write <Ai . We restrict to sets of labellings such
that <Ai and <¬Ai are well-founded.

I Similarly, for boolean combinations of arguments α:

σ <α σ
′ iff σ′(α) < σ(α).

I For example, σ = (1,4/5,0,1,1/5,1) is preferred to all
other labellings with respect to <A6 , being the only one with
σ(A6) = 1.



Preferences with respect to arguments



A many-valued logic with typicality

I Given an argumentation graph G, a gradual semantics S
with domain of argument valuation D, and the set of
labellings ΣS of G wrt S, we let the preferential
interpretation of G wrt S to be the pair IS

G = (D,ΣS, {<α}).
I Language LT is obtained by extending L with a unary

typicality operator T. Intuitively, “a sentence of the form T(α)
is understood to refer to the typical situations in which α
holds” [Booth et al., 2019]

I The typicality operator allows the formulation of conditional
implications (or defeasible implications) of the form
T(α)→ β, ”normally, if α then β”

I As in PTL also general implications α→ β, where α and β
may contain T



A many-valued logic with typicality

I Given a preferential interpretation I = (D,Σ), and a labelling
σ ∈ Σ, the valuation of a propositional formula T(α) in σ is
defined as follows:

σ(T(α)) =

{
σ(α) if there is no σ′ such that σ′ <α σ
0D otherwise

(1)

I When σ(T(A)) > 0D, σ is a labelling maximizing the
acceptability of argument A, among all the labellings in I.

Example
Under Gödel logic with standard involutive negation with n = 5,
the boolean combination of arguments A1 ∧ A2 ∧ ¬A3 has 4
maximally preferred labellings, with σ(A1 ∧ A2 ∧ ¬A3) = 4/5.
For such labellings, σ(T(A1 ∧ A2 ∧ ¬A3)) = 4/5, while equal to 0
for all other labellings.



Labellings and gradual semantics

We may check, for instance:

T(granted loan)→ high salary ∧ being young ≥ 0.7



Graded implications

I Given a preferential interpretation I = (D,Σ), we can now
define the satisfiability in I of a graded implication, having
form α→ β ≥ l or α→ β ≤ u, with l and u in D and α and
β boolean combination of arguments.

I the truth degree of an implication α→ β wrt. I is defined as:

(α→ β)I = infσ∈Σ(σ(α) � σ(β)).

I I satisfies a graded implication α→ β ≥ t (written
I |= α→ β ≥ t) iff (α→ β)I ≥ t ;

I satisfies a graded implication α→ β ≤ u (written
I |= α→ β ≤ u) iff (α→ β)I ≤ u.



Graded implications:example

I The following graded conditionals are among the ones
satisfied in the preferential interpretation I = (C5,Σ, {<α}),
under the ϕ-coherent semantics:
T(A1 ∧ A2 ∧ ¬A3)→ A6 ≥ 1

(with 4 preferred labellings);
T(A1 ∧ A2)→ A6 ≥ 4/5 (12 preferred labellings);
T(A6)→ A1 ∧ A2 ≥ 4/5 (1 preferred labelling).



Properties

Given an interpretation IS = (S,ΣS), associated with an
argumentation semantics S of a graph G:
I Under the choice of combination functions as in Gödel logic,

interpretation IS = (S,ΣS) satisfies the KLM postulates of a
preferential consequence relation, suitably reformulated:

α |∼ β is interpreted as T(α)→ β ≥ 1
|= A→ B is interpreted as α→ β ≥ 1

I For a finite interpretation IS = (S,ΣS), satisfiability of a
graded conditional T(α)→ β ≥ k in IS can be decided in
polynomial time in the product of the size of the
interpretation and the size of the formula.



Towards a probabilistic semantics of gradual
argumentation

I The fuzzy interpretation of arguments also suggests a
probabilistic semantics of gradual argumentation, based on
Zadeh’s probability of fuzzy events [Zadeh1968].

I An approach previously considered for SOMs [JLC2022].
I Consider the set ΣS of labellings of G in a gradual

semantics S, with domain of argument valuation in [0,1],
and a suitable (continuous) t-norm [Montes et al, 2013].

I Assuming a discrete probability distribution p : ΣS → [0,1]
over a set ΣS one can define the probability of a boolean
combination of arguments α as:

P(α) =
∑
σ∈ΣS

σ(α) p(σ)

When the labellings are two-valued (σ(α) is 0 or 1), this
definition relates to the probability of a boolean term α by
Hunter and Thimm [2020].



Towards a probabilistic semantics of gradual
argumentation

I We let the conditional probability of A given B, where A and
B are boolean combinations of arguments, to be

P(A | B) = P(A ∧ B)/P(B)

(provided P(B) > 0).
I As observed by Dubois and Prade [1993], this generalizes

both conditional probability and the fuzzy inclusion index
advocated by Kosko [1992].

I Let us extend the language LT by introducing a new
proposition {σ}, for each σ ∈ Σ (with σ({σ}) = 1 and
σ′({σ}) = 0, for any σ′ 6= σ). Then

P(A|{σ}) = σ(A)

which can be regarded as a subjective probability (i.e., the
degree of belief we put into A when we are in a state
represented by labelling σ).



Towards a probabilistic semantics of gradual
argumentation

I The notion of probability P defined satisfies Kolmogorov’s
axioms for any PZ -compatible t-norm, with associated
t-conorm, and the negation function 	x = 1− x
[Montes2013].

I But, there are properties of classical probability which do
not hold (depending on the choice of t-norm), as a
consequence of the fact that not all classical logic
equivalences hold in a fuzzy logic.



Conclusions and Related work

I We have proposed an approach for defeasible reasoning
over argumentation graphs.

I As a case of study, for the ϕ-coherent semantics in the finite
valued case, the approach has been implemented through
an ASP encoding [ASPOCP 2023]

I FW: the use of this formalism for explanation



Related work
I Weydert [2013] has proposed one of the first approaches for

combining abstract argumentation with a conditional
semantics. He has proposed the JZ-evaluation semantics.

I The correspondence between Abstract Dialectical
Frameworks (Brewka2013) and Conditional Logics have
been studied by Heyninck, Kern-Isberner and Thimm
[FLAIRS2020].

I In the work by Skiba and Thimm [2022] Ordinal Conditional
Functions (OCFs) are interpreted and formalized for
Abstract Argumentation, by developing a framework that
allows to rank sets of arguments wrt. their plausibility. They
propose an OCF inspired by System Z ranking function.

I Thimm’s probabilistic semantics for AF [ECAI 2012]
I Epistemic graphs [Hunter, Pollberg, Thimm 2021] allow

epistemic constraints involving statements about
probabilities (we have not considered them so far).



Thank you!!!!!
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