AL⁺: On the Extension of Argumentation Logic (AL)

> Antonis Kakas University of Cyprus

Paolo Mancarella University of Pisa

39th Italian Conference on Computational Logic

June 26-28, 2024 - Rome, Italy

Classical Deduction (PL) can be reformulated in Argumentation Logic (AL)

ALEPLAL does not explode.

Can we extend AL to AL^+ \supset AL?

Technical Background (Informal)

AL Reasoning carried out via **Dialectic** Argumentation between a formula ϕ and all its opposites.

- \Box **AL** Reasoning for ϕ via Cases **A** case for **Φ**
 - **No** case for $\neg \phi$

AL Reasoning via "Case Satisfiability".

□A Case is a set of arguments - formulae Δ that deals with/defends against all opposing sets A.

Defending against A via: Take in the Case a directly opposite position Include in Case ¬ψ for some ψ in A - Undermine A A is opposed by the given premises T. 4

Formal Definition of Argumentation Logic

In ABSTRACT Argumentation

<Args, ATT>/<Args, Att, Def>

\Box Acc(\Delta,\Delta'): Set \Delta is acceptable relative to a set \Delta'

 $\square A$ relative Case for Δ in the context of Δ'

Relative Acceptability Semantics <Args,Att,Def>

Acc(\Delta, \Delta'): Set Δ is acceptable relative to a set Δ'

□ $Acc(\Delta, \Delta')$ iff $\Delta \subseteq \Delta'$, or for any **A** that **attacks** Δ : **A** $\not\subseteq \Delta' \cup \Delta$ there exists **D** that **defends against A** such that $Acc(D, \Delta' \cup \Delta)$.

• Acc(-,-) is the least fixed point of the Acc operator. Δ is acceptable iff Acc(Δ , {}) holds

Computation of Relativistic Argumentation <Args,Att,Def>

Argumentation Logic ≈ Propositional Logic

Relative Acceptability in <Args, Att, Def> for PL where

□Args: Identified with Sets of Propositional Formulae: Δ Support formulae via direct schema proofs from Δ

- **Att:** A attacks Δ : $\mathbf{T} \cup \Delta \cup A \vdash_{\mathbf{DD}} \bot$
- □ Def: (i) "¬♦ defends against ♦ and vice-versa, i.e. Freedom of Choice" (ii) Arguments from the given theory T defend against those outside T but not vice-versa.

Argumentation Logic ≈ Propositional Logic Deduction via Relativistic Argumentation

T = {} Example of Excluded Middle Law: q V ¬ q

AL = PL rests on \neg Acc(φ) $\Leftrightarrow \varphi$ is inconsistent (via RAA),

Reduction ad Absurdum (RAA) in AL

AL = PL rests on $\neg Acc(\phi) \Leftrightarrow \phi$ inconsistent (via RAA)

T2 = {} - Excluded Middle Law

 \neg Acc(φ) $\Leftrightarrow \varphi$ inconsistent (via RAA)

Reduction ad Absurdum (RAA) in AL

RAA ⇔ Non-acceptability But

$\neg \operatorname{Acc}(\varphi) / \Rightarrow \operatorname{Acc}(\neg \varphi)$

Inconsistent $\phi \implies$ **Entailment of** $\neg \phi$

 \Rightarrow Consistency of $\neg \phi$

Both ¬ Acc(φ) and ¬ Acc(¬φ) can hold (as in logical paradoxes)

AL⁺ - Extending AL

Examples in Abstract Argumentation

Historical Background

Pisa 1991: LP with Inconsistent NAF Literals/Assumptions Beyond Admissible Negation as Failure Acceptability Semantics for NAF

AL⁺ from **AL** - Formal Definition

Acc⁺(Δ , Δ_0) iff \forall A attacks Δ (A $\nsubseteq \Delta \cup \Delta_0$): > $\exists \Delta$'s.t. defends against A and Acc(Δ ', $\Delta \cup \Delta_0$) OR > $\neg Acc(A, \{\})$

Results:

AL⁺ does not explode AL in PL (for consistent T)

 $\blacksquare \mathsf{AL}^+ \supset \mathsf{AL}$

$AL^+ \supset AL - Example 2 cnt.$

Case of: LOGICAL PARADOX

Argumentation Logic Beyond Classical Logic

Argumentation Logic applies unchanged when premises in T are inconsistent **No explosion** or trivialization. Inconsistency/Paradoxes => Alternatives Can extend Defense/Preferences: Direct Conflict subsets of T defend each other Domain Preferences on T or arguments **Closing the Circle of AL and Argumentation** in AI, e.g. of NM Logics, etc in AI

Wider Scope: What is Logical Reasoning?

Consistency & Entailment vs Freeness & Satisfiability

Verify Consistency vs Build Acceptable Cases

(Aristotle: Non-self-contradictory Argument)