
Logic Programming for Knowledge Graph Completion
Damiano Azzolini, Matteo Bonato, Elisabetta Gentili, and Fabrizio Riguzzi
University of Ferrara June 27, 2024

CILC 2024

Contribution

Question: can parameter learning for Probabilistic Logic Programming be
a competitive algorithm to solve the knowledge graph completion (KGC)
task?

Answer: (probably) no.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 1/31

Knowledge Graphs I

Knowledge Graphs (KGs) are graph-based representations of knowledge
in terms of relationships between entities.

A KG can be represented as a set of triples (h, r, t) where:
• r is the relation
• h and t are the head (start) and tail (end) entities of the relation

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 2/31

Knowledge Graphs II

From AnyBURL

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 3/31

Knowledge Graphs III

Real-world KGs are usually incomplete and sparse, thus inference of
missing information (entities or relationships) is often required.

This task is referred to as knowledge graph completion (KGC).

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 4/31

Knowledge Graphs IV

We focus on the link prediction task: predicting either the tail t of a triple
(h, r, ?), or the head h of a triple (?, r, t).

In other words, given a completion task (h, r, ?) on a graph G, the goal is
to find an entity t such that (h, r, t) ̸∈ G is true.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 5/31

Knowledge Graphs V
Candidates triple are associated with a score, sorted in descending order,
and ranked.

Different approaches to break ties: minimum, maximum, average (i.e., it
assigns the average rank of the group to each candidate – we adopted
this), etc, ranking.

Example: t0 score 10, t1 score 2, and t2 score 2. If we apply average rank
we have:
• t0 rank 1
• t1 rank (2 + 3)/2 = 2.5
• t2 rank (2 + 3)/2 = 2.5

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 6/31

Knowledge Graphs VI

The graph G is often split into three datasets, training set, test set, and
validation set, used to train the model and evaluate its performance.

Given a set of test triples, KGC algorithms are usually evaluated on link
prediction tasks in terms of the following metrics:
• Mean Rank (MR): average rank of the test triples
• Mean Reciprocal Rank (MRR): average reciprocal individual rank of

the test triples
• Hits@K: represents the proportion of the test triples ranked in the

top K positions

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 7/31

Knowledge Graphs VII

Candidates for a triple may not be present in the test set but they may
appear in the training or validation set.

To not penalize the ranking of the correct candidate, predictions that
appear in triples of the training or validation set can be filtered out:
filtered metrics.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 8/31

KGC Tools - AnyBURL I

Iteratively samples from a KG random paths of length n, where n is the
number of edges and starts from n = 2.

This process continues until a certain saturation parameter (which
depends on the contribution to the overall performance of the
considered rules) is reached.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 9/31

KGC Tools - AnyBURL II

These paths are then assembled into ground logical rules where the first
edge is considered as the head and the remaining as the body.

Given a set of triples {(e0,h0, e1), (e1,b1, e2), . . . , (en,bn, en+1)}, we can
construct a ground path rule R of the form
h(e0, e1)← b1(e1, e2), . . . ,bn(en, en+1).

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 10/31

KGC Tools - AnyBURL III

Green: married(el, lisa)← born(lisa,amsterdam)

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 11/31

KGC Tools - AnyBURL IV

AnyBURL extracts three types of rules.

Name Structure
C h(Y, X)← b1(X,A2), . . . ,bn(An, Y)
AC1 h(e0, X)← b1(X,A2), . . . ,bn(An, en+1)
AC2 h(e0, X)← b1(X,A2), . . . ,bn(An,An+1)

X and Y are variables that appear in the head, while Ai can appear only in
the body. Lowercase letters indicate constants.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 12/31

KGC Tools - AnyBURL V

The score of a rule R is its confidence conf (R), calculated as the fraction
of body groundings that result in a correct head grounding based on the
training data.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 13/31

KGC Tools - AnyBURL VI

When the number of rules is high, computing KGC metrics is very
expensive.

AnyBURL limits the search for candidates if during the grounding of a rule
a branch with more than 104 children is found.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 14/31

KGC Tools - AnyBURL VII

For example, consider the rule

hasGender(X, Y)← bornIn(X,A),bornIn(B,A),hasGender(B, Y)

and the query hasGender(susi, T) where susi is born in the USA. The
second body atom unifies B with each person known to be born in the
USA, so there can be more than 104 instantiations. In this case, AbyBURL
only retrieves the first 104.

This only provides an approximation of the metrics but it is a good
trade-off between speed and precision.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 15/31

KGC Tools - LIFTCOVER+ I

Liftable PLP programs contain clauses with a single annotated atom hi in
the head annotated with a probability Πi and the predicate of this atom is
the same for all clauses:

hi : Πi :− bi1, . . . ,biui

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 16/31

KGC Tools - LIFTCOVER+ II

married(A,B) : 0.9 :− born(A, C), lives(B, C).

married(A,B) : 0.7 :− speaks(A, C), studied(B, C).

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 17/31

KGC Tools - LIFTCOVER+ III

To compute the probability of a query q, it is necessary to find only the
number of ground instantiations mi of each of the n clauses so that the
body is true and the head is equal to q.

P(q) = 1−
n∏
i=1

(1− Πi)
mi

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 18/31

KGC Tools - LIFTCOVER+ IV

The parameter learning task consists in learning the probabilities of the
rules such that the likelihood of a set of examples is maximized.
• LIFTCOVER adopts Expectation Maximization or Limited-memory BFGS

(LBFGS)
• LIFTCOVER+ adopts Expectation Maximization and regularization to

prevent overfitting or gradient descent

For both, clauses with a low probability value (less than a user defined
parameter ϵ) are discarded.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 19/31

KGC Tools - LIFTCOVER+ V

Positive and negative examples should be provided.

We can solve the KGC task with LIFTCOVER+ by generating rules and then
appying its parameter learning algorithm.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 20/31

Rules Generation Methods I

Three generation methods
• generation of cyclic rules
• generation of rules as in AnyBURL
• weighted sampling

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 21/31

Rules Generation Methods II
Generation of cyclic rules (implemented in SWI-Prolog): generate only
cyclic rules by generating tuples of relations r0, r1, . . . , and then
converting them to rules.

Each triple (h, rel, t) in the dataset is translated into an atom t(h, rel, t).
For example, the tuple (r0,r1,r2,r3) is translated into the rule

r(A,r0,B):- r(A,r1,C),r(C,r2,D),r(D,r3,B).

where r/3 is defined as

r(S,R,T):- t(S,R,T).
r(S,i(R),T):- t(T,R,S).

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 22/31

Rules Generation Methods III

The tuples of relations are obtained by starting from triples in the
training set. For example, if we want to extract 4 relations we look for
values of R1,R2,R3,R4 such that the query

r(h,R1,C),r(C,R2,D),r(D,R3,E),r(E,R4,t).

succeeds at least once. Then duplicate tuples are removed.

Removing duplicated tuples is very expensive.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 23/31

Rules Generation Methods IV

Generating Rules by Weighted Sampling (implemented in SWI-Prolog)
• we associate each relation with a probability proportional to its

occurrences
• we first sample a relation from Lr to consider as head relation
• we select a random number between two and four and sample again

the same number of relations from Lr, that will be considered for the
body

Both sampling phases take into account the probability associated with
each relation.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 24/31

Rules Generation Methods V

We generate rules by creating an atom with two variables for each
relation and then connect the atoms to create a chain rule.

Example: suppose we have r0 for the head and r1 and r2 for the body. We
obtain the rule

r(A,r0,B) :- r(B,r1,C), r(C,r2,D)

Once we have all the rules, we compute the cumulative number of
instantiations for all the bodies, call it ni, and associate each rule with a
score given by the ratio between its number of body instantiations and ni.

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 25/31

Experimental Evaluation I

Selected datasets

Dataset Train Valid Test Total Entities Relations
Nations 1,592 199 201 1’992 28 55
WN18RR 86,835 3,034 3,134 93,003 71,453 11
FB15k-237 272,115 17,535 20,466 310,116 14,505 237
Nell 228,426 129,810 144,307 502,543 63,361 400

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 26/31

Experimental Evaluation II
Maximum length of the body of rules and number of rules for each
dataset and each rule generation method.

Dataset Rule Generation Method Max Length #Rules

Nations
Paths 3 305,365

AC1 + AC2 + C 3 2,243
Weighted Sampling 4 105

WN18RR Paths 3 3,076
Weighted Sampling 4 105

FB15K-237 Paths 3 33,696
Weighted Sampling 4 105

Nell Paths 3 101,242
Weighted Sampling 4 105

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 27/31

Experimental Evaluation III

We adopted the EM algorithm for parameter learning. It was performed
on the Leonardo HPC system of Cineca, using machines with
• Intel Xeon Platinum 8358
• 2.60GHz
• 32 cores
• 481GB of RAM
• Nvidia A100 GPUs with 64GB of memory

The Weighted Sampling algorithm was run on a machine running at 2.40
GHz with 16 GB of RAM with a time limit of 8 hours (this approach does
not have a learning phase).

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 28/31

Experimental Evaluation IV

We implemented the metrics computation in SWI-Prolog.

Tested the following configurations:
• Sampling path + EM
• Sampling path + confidence as score for rules
• AC1 + AC2 + C + EM
• Weighted Sampling

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 29/31

Experimental Evaluation V
Dataset Approach H@1 H@3 H@5 H@10 MRR

Nations
Paths+EM 0.457 0.786 0.860 0.995 0.638

Paths+Conf 0.492 0.791 0.855 0.970 0.658
AC1+AC2+C+EM 0.218 0.572 0.761 0.910 0.440

W. S. 0.507 0.781 0.845 0.965 0.647

WN18RR
Paths+EM 0.340 0.453 0.493 0.537 0.419

Paths+Conf 0.437 0.505 0.537 0.573 0.489
W. S. 0.030 0.082 0.110 0.151 0.074

FB15K-237 Paths+EM 0.214 0.309 0.353 0.426 0.284
Paths+Conf 0.244 0.352 0.403 0.480 0.323

Nell Paths+EM 0.001 0.001 0.002 0.005 0.001
Paths+Conf 0.001 0.002 0.003 0.006 0.003

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 30/31

Conclusions

• Sampling paths and applying EM is not beneficial maybe due to the
syntethic generation of negative examples

• Weighted sampling cannot handle larger datasets due to the high
number of instantiations for rules

• Generating the three types of rules as in AnyBULR and then applying
EM is not feasible since too much memory is required in the learning
phase

• Metrics computation in SWI-Prolog is very slow (maybe unification
has too much overhead in answering such simple queries)

Logic Programming for Knowledge Graph Completion | CILC 2024 |
Page 31/31

