== UNIVERSITA
MARIO ALVIANO DELLA
DeMaCS@UNICAL CALABRIA

il Campus per eccellenza
Future
I r/ iArttiil’li'ciaI
_ ASP_and ITLMS | intelligence
Interaction with YAML 0
Preliminary Report I ¢ L/

Joint work with
Lorenzo Grillo

I L) L] L} L] —

GitHub Repository 2l i
https://github.com/Xiro28/LLMASP TELnAroy A ERICSY e §e

https://github.com/Xiro28/LLMASP

Large Language Models

Computational models achieving

and

other natural language processing tasks.

Large Language Models

Computational models achieving
general-purpose language generation and
other natural language processing tasks.

We have General Al here!

Large Language Models

Computational models achieving
general-purpose language generation and
other natural language processing tasks.

We have General Al here!

False! It is good at NLP

Logical reasoning is still our subject

Answer Set Programming

KRR language, good for combinatorial

search and optimization

Answer Set Programming

KRR language, good for combinatorial

search and optimization

% guess one color for each node
{fassign({X,C) : color(C)} = 1 :- node(X).

% adjacent nodes must have different colors
:- edge(X,Y), assign(X,C), assign(Y,C).

% minimize the number of used colors
:~ assign{_,C). [1@1, C]

Answer Set Programming

KRR language, good for combinatorial

search and optimization

% guess one color for each node
{fassign({X,C) : color(C)} = 1 :- node(X).

% adjacent nodes must have different colors
:- edge(X,Y), assign(X,C), assign(Y,C).

% minimize the number of used colors
:~ assign{_,C). [1@1, C]

Possibly (read it certainly)

there is a (huge) barrier to entry

Computer Programming

Output

Here is & list of their avallability:

- Andrew: 11 am to 3 pm

- Joanne: noon to 2 pm, and 3230 pm to 5 pm

- Hannah: noon to 12230 prm, and 4 pm to & prm

Based on their availability, there is a 30-minule window where all three of them are
available, which is from 4 pm o 4-30 pm. 50, the meeting can be scheduled at 4 pm,

=
=

Output

e

Here is a list of their availability:

- Andrew: T am to 3 pm

- Joanne: noon to 2 pm, and 3230 pm to 5 pm

d - Hannah: noon to 12230 prm, and 4 pm to & prm

o=
=

Based on their avalability, there is a 30-minule window where all three of them are
available, which is from 4 pm to 4-30 pm. So, the meeting can be scheduled at 4 pm,

As we are not a curch...

Idea Overview

Start with natural language

Idea Overview

Start with natural language

E{} Obtain a relational
representation (facts)

Idea Overview

Start with natural language

E{} Obtain a relational
representation (facts)

E:> Combine facts with a KB
(an ASP program)

Idea Overview

Start with natural language

E{} Obtain a relational

representation (facts)

E:> Combine facts with a KB
(an ASP program)

L

Map the answer set to
natural language

Idea Overview

Start with natural language

E{} Obtain a relational

representation (facts)

E:> Combine facts with a KB
(an ASP program)

L

Map the answer set to
natural language

LLMs themselves

A simple PROMPT
asking for facts

ChatGPT v &

Encode as Datalog facts the following sentences:
Tonight I want to go to eat some pizza

with Marco and Alessio. Marco really like the pizza
with onions as toppings.

@ Sure! Here are the sentences encoded as Datalog facts:

data

% Facts about the desire to go eat pizza
wants_to_eat_pizza(tonight, I).

% Facts about the people involved
going_with(I, Marco, tonight).
going_with(I, Alessio, tonight).

% Facts about pizza preferences

likes_pizza with_topping(Marco, onions).

Explanation of the facts:

e “wants_to_eat_pizza(tonight, I). expresses that"I" want to eat pizza
tonight.

s “going with(I, Marco, tonight). and “going with(I, Alessio,
tonight). " express that "I" will go with Marco and Alessio tonight.

¢ “likes pizza with_topping(Marco, onions).” expresses that Marco likes

pizza with onions as toppings.

LLMs themselves

A simple PROMPT
asking for facts

We need more control
on these facts!

ChatGPT v &

Encode as Datalog facts the following sentences:
Tonight I want to go to eat some pizza

with Marco and Alessio. Marco really like the pizza
with onions as toppings.

@ Sure! Here are the sentences encoded as Datalog facts:

data

% Facts about the desire to go eat pizza
wants_to_eat_pizza(tonight, I).

% Facts about the people involved
going_with(I, Marco, tonight).
going_with(I, Alessio, tonight).

% Facts about pizza preferences

likes_pizza with_topping(Marco, onions).

Explanation of the facts:

e “wants_to_eat_pizza(tonight, I). expresses that"I" want to eat pizza
tonight.

s “going with(I, Marco, tonight). and “going with(I, Alessio,
tonight). " express that "I" will go with Marco and Alessio tonight.

“likes pizza with_topping(Marco, onions).” expresses that Marco likes

pizza with onions as toppings.

LLMs themselves

A simple PROMPT
asking for facts

We need more control
on these facts!

And we don't need

this garbage

ChatGPT v &

Encode as Datalog facts the following sentences:
Tonight I want to go to eat some pizza

with Marco and Alessio. Marco really like the pizza
with onions as toppings.

@ Sure! Here are the sentences encoded as Datalog facts:

datalog (P Copia codice
% Facts about the desire to go eat pizza

wants_to_eat_pizza(tonight, I).

% Facts about the people involved
going_with(I, Marco, tonight).
going_with(I, Alessio, tonight).

% Facts about pizza preferences

likes_pizza with_topping(Marco, onions).

Explanation of the facts:
“wants_to_eat_pizza(tonight, I). expresses that "I" want to eat pizza
tonight.

“going_with(I, Marco, tonight).” and “going with(I, Alessio,

tonight). " express that "I" will go with Marco and Alessio tonight.

“likes pizza with_topping(Marco, onions).” expresses that Marco likes

pizza with onions as toppings.

B e P

Prompt Engineering ChatGPT v

You are a Natural Language to Datalog translator. To

Chat with the LLM... translate your

input to Datalog, you will be asked a sequence of

give instructions questions. The
on the format and answers are inside the user input provided with
task yOU want to achieve [USER_INPUT]input[/USER_INPUT] and the format is

provided with
[ANSWER_FORMAT]predicate(terms).
[/ANSWER_FORMAT]. Predicate is a
lowercase string (possibly including underscores).
Termsis a
comma-separated list of either double quoted
strings or integers.
Be sure to control the number of terms in each
answer!
An answer MUST NOT be answered if it is not present
in the user input.
Remember these instructions and don't say
anything!

® Understood. Please provide the input for translation.

Prompt Engineering ChatGPT v

You are a Natural Language to Datalog translator. To

Chat with the LLM... translate your

input to Datalog, you will be asked a sequence of

give instructions questions. The
on the format and answers are inside the user input provided with
task yOU want to achieve [USER_INPUT]input[/USER_INPUT] and the format is
provided with
[ANSWER_FORMAT]predicate(terms).
[/ANSWER_FORMAT]. Predicate is a
lowercase string (possibly including underscores).

We can start with general e
. . erms is a
Instructions for our task comma-separated list of either double quoted

strings or integers.

Be sure to control the number of terms in each
answer!

An answer MUST NOT be answered if it is not present
in the user input.

Remember these instructions and don't say
anything!

® Understood. Please provide the input for translation.

Here is some context that you MUST analyze and

remember. Something specific of the

The user provides a request to obtain catering application we are Working on
suggestions. The user can mention a day,

other persons, and their cuisine preferences.
Remember this context and don't say anything!

Understood. Please provide the user input for translation.

73 Here is some context that you MUST analyze and

dethatlon: Something specific of the
application we are working on

The user provides a request to obtain catering
suggestions. The user can mention a day,
other persons, and their cuisine preferences.
Remember this context and don't say anything!

® Understood. Please provide the user input for translation.

&2 [USER_INPUT]Tonight I want to go to eat some pizza
with Marco and Alessio. Marco

And we can start really like the pizza with onions as toppings.

extracting facts! [/USER_INPUT]
List all the persons mentioned including me if

indirectly included.
[ANSWER_FORMAT]person("who").
[/ANSWER_FORMAT]

® person("T").
person("Marco”).

person("Alessio").

[USER_INPUT]Tonight I want to go to eat some pizza
with Marco and Alessio. Marco

really like the pizza with onions as toppings.
[/USER_INPUT]

For each person, list any restaurant preferences.
[ANSWER_FORMAT]cuisine_preferences("who",
"country”).[/ANSWER_FORMAT]

mnon

cuisine_preferences("Marco", "pizza").

cuisine_preferences("Alessio”, "pizza").

cuisine_preferences("l", "pizza").

[USER_INPUT]Tonight I want to go to eat some pizza
with Marco and Alessio. Marco

really like the pizza with onions as toppings.
[/USER_INPUT]

For each person, list any restaurant preferences.
[ANSWER_FORMAT]cuisine_preferences("who",
"country”).[/ANSWER_FORMAT]

mnon

® cuisine_preferences("Marco”, "pizza").

cuisine_preferences("Alessio”, "pizza").
[USER_INPUT]Tonight I want to go to eat some pizza
with Marco and Alessio. Marco

really like the pizza with onions as toppings.
[/USER_INPUT]

For each person, list what they want to eat.
[ANSWER_FORMAT]want_food("who", "what").
[/ANSWER_FORMAT]

cuisine_preferences("l", "pizza").

@ want_food("T", "pizza").
want_food("Marco", "pizza with oninns").

want_food("Alessio", "pizza").

Reasoning with ASP

~—— | Extracted facts

person("I"}).

person("Marco").
person("Alessio").

cuisine_preferences("Marco", "pizza").
cuisine_preferences("Alessio", "pizza").
cuisine_preferences("I", "pizza").

want_food("I", "pizza").
want_food("Marco", "pizza with onions").
want_food("Alessio", "pizza").

Reasoning with ASP

~—— | Extracted facts

person("I"}).

person("Marco"). Combine facts
/ i
with a KB

person("Alessio"). .
can_go_together(X,Y,Z) :-

cuisine_preferences("Marco", "pizza"). person(X), person(Y), X <Y,
cuisine_preferences("Alessio", "pizza"). want_food(X,Z), want_food(Y,Z).
cuisine_preferences("I", "pizza").

can_go_together(X,Y,Z) :-
want_food("I", "pizza"). person(X), person(Y), X <Y,
want_food("Marco", "pizza with onions"). cuisine_preferences(X,Z), cuisine_preferences(Y,Z).
want_food("Alessio", "pizza").

#show can_go_together/3.

Reasoning with ASP

~—— | Extracted facts

/ Combine facts
- with a KB
can_go_together(X,Y,Z) :-

person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z) :-
person(X), person(Y), X <Y,
cuisine_preferences(X,Z), cuisine_preferences(Y,Z).

person("I"}). -
person("Marco").
person("Alessio").
cuisine_preferences("Marco", "pizza").
cuisine_preferences("Alessio", "pizza").
cuisine_preferences("I", "pizza").
want_food("I", "pizza").
want_food("Marco", "pizza with onions").
want_food("Alessio", "pizza").
Obtain an
answer set

#show can_go_together/3.

——_

can_go_together("Alessio", "Marco", "pizza").
can_go_together("I", "Marco", "pizza").
can_go_together("Alessio","I", "pizza").

Back to Natural Lanquage

You are now a Datalog to Natural Language
translator.

You will be given relational facts and mapping
instructions.

Relational facts are given in the form
[FACTS]atoms[/FACTS].

Remember these instructions and don't say
anything!

@ Understood. Please provide the relational facts and mapping instructions.

General instructions
on the task

Back to Natural Language

©

You are now a Datalog to Natural Language
translator.

You will be given relational facts and mapping
instructions.

Relational facts are given in the form
[FACTS]atoms[/FACTS].

Remember these instructions and don't say
anything!

Understood. Please provide the relational facts and mapping instructions.

Something specific of the
application we are working
on

General instructions
on the task

Here is some context that you MUST analyze and
remember.

Explain the facts in a human readable way, as a
paragraph.

Remember this context and don't say anything!

® Understood. Please provide the relational facts for translation.

Provide facts and
mapping instructions

m m m mn

[FACTS]can_go_together("me", "marco”,
can_go_together("me", "alessio", "pizza").
can_go_together("marco", "alessio", "pizza"). [/FACTS]
Each fact matching can_go_together("person 1",
"person 2", "cuisine preference") must be

interpreted as follows: Say that "person 1" can go

pizza").

with "person 2" to eat "cuisine preference”.

Collect answers

® Ican go with Marco to eat pizza. I can go with Alessio to eat pizza. Marco can

go with Alessio to eat pizza.

74 Summarize the following responses:
I can go with Marco to eat pizza. I can go with Alessio
to eat pizza. Marco can go with Alessio to eat pizza.

The responses indicate that the speaker (presumably "me") can accompany
Marco and Alessio to eat pizza, and Marco can also accompany Alessio to eat

pizza.

Ask to summarize the
collected responses

This is the output
shown to the user

Let’s Automate IT!

YAML (yet another markup language)

Like JSON... but more readable

Let’s Automate IT!

YAML (yet another markup language)

Like JSON... but more readable

name: Lorenzo
degrees:
- Bachelor

short bio:

I'm Lorenzo. ..

I'm a studen
| e | -] A d bl &

/ Here is an object with properties

~ 1 Ll_]':-.n'l
AL JINLWAL . o

name, degrees and short bio
degrees is a list (of values)

short bio is a string (block notation)

Let’s Automate IT!

YAML (yet another markup language)

Like JSON... but more readable

name: Lorenzo / Here is an object with properties
degrees: name, degrees and short bio
- Bachelor
short bio: degrees is a list (of values)
I'm Lorenzo...
I'm a student at UNICAL... short bio is a string (block notation)

ﬁ We use YAML to

T 7 define an application

- _: The user provides a request to obtain catering suggestions.
The user can mention a day, other persons, and their cuisine preferences.
- person("who"): List all the persons mentioned including me if indirectly included.

- cuisine_preferences("who", "country"): For each person, list any restaurant preferences.
- want_food("who", "what"): For each person, list what they want to eat.

knowledge base: |
can_go_together(X,Y,Z) :-
person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z) :-
person(X), person(Y), X <Y,
cuisine_preferences(X,Z), cuisine_preferences(Y,Z).

#show can_go_together/3.

postprocessing:
- _! Explain the facts in a human readable way, as a paragraph.
- can_go_together("person 1", "person 2", "cuisine preference"): |
Say that "person 1" can go with "person 2" to eat "cuisine preference".

—

preprocessing: //'

We use YAML to
define an application

- _: The user provides a request to obtain catering suggestions.
The user can mention a day, other persons, and their cuisine preferences.
- person("who"): List all the persons mentioned including me if indirectly included.

- cuisine_preferences("who", "country"):

__

knowledge base: |

For each person,
- want_food("who", "what"): For each person, list what they want to eat.

list any restaurant preferences.

can_go_together(X,Y,Z)
person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z) :-
person(X), person(Y), X <Y,
cuisine_preferences(X,Z), cuisine_preferences(Y,Z).
#show

- - + -~ T £ - F
can_go_together/3.

postprocessing:

- _! Explain the facts in a human readable way, as a paragraph.
- can_go_together("person 1", "person 2", "cuisine preference"): |
Say that "person 1" can go with "person 2" to eat "cuisine preference".

Preprocessing includes the context and
the instructions on the atoms to extract
from the input

—

preprocessing: //’

We use YAML to
define an application

- _: The user provides a request to obtain catering suggestions.
The user can mention a day, other persons, and their cuisine preferences.
- person("who"): List all the persons mentioned including me if indirectly included.

- cuisine_preferences("who", "country"):

__

knowledge base: |

For each person,
- want_food("who", "what"): For each person, list what they want to eat.

list any restaurant preferences.

can_go_together(X,Y,Z)
person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z)

Preprocessing includes the context and
the instructions on the atoms to extract
from the input

- |
person(X), person(Y), X <Y, ~"""‘555555555555555-5"““-—

cuisine_preferences(X,Z), cuisine_preferences(Y,Z).
#show can_gc

0_together/3.

postprocessing:

- _! Explain the facts in a human readable way, as a paragraph.
- can_go_together("person 1", "person 2", "cuisine preference"): |
Say that "person 1" can go with "person 2" to eat "cuisine preference".

KB is simply an ASP program

preprocessing:

We use YAML to
define an application

_: The user provides a request to obtain catering suggestions.
The user can mention a day, other persons, and their cuisine preferences.
- person("who"): List all the persons mentioned including me if indirectly included.

- cuisine_preferences("who",
- want_food("who", "what"):

knowledge base: |
can_go_together(X,Y,Z)
person(X), person(Y), X <Y,
want_food(X,Z), want_food(Y,Z).

can_go_together(X,Y,Z)
person(X), person(Y), X <Y,

cuisine_preferences(X,Z), cuisine_preferences(Y,Z).

postprocessing:

- _! Explain the facts in a human readable way, as a paragraph.
"person 2",
Say that "person 1" can go with "person 2" to eat "cuisine preference".

- can_go_together("person 1",

"country"):
For each person,

For each person, list any restaurant preferences.

list what they want to eat.

_;

Preprocessing includes the context and
the instructions on the atoms to extract
from the input

\ |

KB is simply an ASP program

Postprocessing includes the context
and the mapping instructions

d

"cuisine preference"): |

Architecture Overview ﬂ

2. Extract the atoms from the
preprocessed input

6. Convert the ASP result to a Bressrssmnrmsnsneaes

human readable string
(postprocessing)

.....

7. Output the
converted string

1. Preprocess the User Input

sarnrd 3. Get the Extracted Atoms

5. Get the Reason Output

4. Reasoning over
the Extracted Atoms

Input
YAML APPLICATION
Contains:
Preprocessing info,
l:lser In!JUt Knowledge Base (ASP code),
(in English) Postprocessing info
| I
‘)
CORE <
LLMASP ENGINE
1 LLM ENGINE ASP ENGINE
Output for the user
........... 7 (in English)
Output }~

Summing UP

LLMASP combines
NLP capabilities of LLMs
with the deep reasoning of ASP

Summing UP

LLMASP combines
NLP capabilities of LLMs
with the deep reasoning of ASP

Summing UP

LLMASP combines
NLP capabilities of LLMs
with the deep reasoning of ASP

We automated the interaction

with LLM and ASP engines

Still a lot to do!

Why those prompts and not something different?
We have to build a dataset.

We have to try different prompts and measure their quality.

We can start with the preprocessing and then evaluate the
postprocessing by extracting facts from the produced output.

)
C
O

=
0
@
-

O

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 46

