Introduction ●O	Syntax OO	Semantics 00	Decidability 000000	
•0				

Some decidability issues concerning C^n real functions

¹University of Verona (I), ²University of Catania (I), ³University of Trieste (I) and ⁴Pontificia Università Gregoriana (I)

CILC 2024

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Introduction
○●The RDFⁿ theories
○Syntax
OSemantics
ODecidability
OConclusions
OTarski's theory of reals - Description

Tarski's theory of reals (A. Tarski, 1939/1951).

(A. Tarski, 1939/1951).

A first-order (fully quantified) theory of real numbers with operations + , $\,\cdot\,$, - and relations > , $\,<\,$, $\,=$.

An example: $orall a orall b d b \forall c \forall d [a
eq 0 <math>
ightarrow \exists x (ax^3 + bx^2 + cx + d = 0)$

Theorem (Tarski, 1951)

Tarski's theory of reals is decidable.

Extensions:

Complex numbers, *n*-dimensional vectors, plane geometry, space geometry, *n*-dimensional geometry, non-Euclidean geometries, projective geometry.

Limitations:

Tarski's theory of reals (A. Tarski, 1939/1951).

A first-order (fully quantified) theory of real numbers with operations + , $\,\cdot\,$, - and relations > , $\,<\,$, $\,=$.

An example:

 $\forall a \forall b \forall c \forall d [a \neq 0 \rightarrow \exists x (ax^3 + bx^2 + cx + d = 0)]$

Theorem (Tarski, 1951)

Tarski's theory of reals is decidable.

Extensions:

Complex numbers, *n*-dimensional vectors, plane geometry, space geometry, *n*-dimensional geometry, non-Euclidean geometries, projective geometry.

イロト イポト イヨト イヨト

Limitations:

Tarski's theory of reals (A. Tarski, 1939/1951).

A first-order (fully quantified) theory of real numbers with operations + , $\,\cdot\,$, - and relations > , $\,<\,$, $\,=$.

An example:

 $\forall a \forall b \forall c \forall d [a \neq 0 \rightarrow \exists x (ax^3 + bx^2 + cx + d = 0)]$

Theorem (Tarski, 1951)

Tarski's theory of reals is decidable.

Extensions:

Complex numbers, *n*-dimensional vectors, plane geometry, space geometry, *n*-dimensional geometry, non-Euclidean geometries, projective geometry.

Limitations:

Tarski's theory of reals (A. Tarski, 1939/1951).

A first-order (fully quantified) theory of real numbers with operations + , $\,\cdot\,$, - and relations > , $\,<\,$, $\,=$.

An example:

 $\forall a \forall b \forall c \forall d [a \neq 0 \rightarrow \exists x (ax^3 + bx^2 + cx + d = 0)]$

Theorem (Tarski, 1951)

Tarski's theory of reals is decidable.

Extensions:

Complex numbers, *n*-dimensional vectors, plane geometry, space geometry, *n*-dimensional geometry, non-Euclidean geometries, projective geometry.

イロト イポト イヨト イヨト

э

Limitations:

Tarski's theory of reals (A. Tarski, 1939/1951).

A first-order (fully quantified) theory of real numbers with operations + , $\,\cdot\,$, - and relations > , $\,<\,$, $\,=$.

An example:

 $\forall a \forall b \forall c \forall d [a \neq 0 \rightarrow \exists x (ax^3 + bx^2 + cx + d = 0)]$

Theorem (Tarski, 1951)

Tarski's theory of reals is decidable.

Extensions:

Complex numbers, *n*-dimensional vectors, plane geometry, space geometry, *n*-dimensional geometry, non-Euclidean geometries, projective geometry.

Limitations:

Introduction	The <i>RDFⁿ</i> theories	Syntax	Semantics	Decidability	
00	●	OO	00	000000	
Applications	to analysis				

Some decidable fragments of real analysis:

- $RMCF \hookrightarrow RMCF^+$, (continuous functions)
- $RDF \hookrightarrow RDF^+ \hookrightarrow RDF^* \hookrightarrow RDF^n$. (continuous functions with derivatives)

Theory RDFⁿ

(Theory of Reals with *n*-Differentiable Functions -G. Buriola, D. Cantone, G. Cincotti, E. Omodeo, G. Spartà).

An unquantified first-order theory of real functions of a real variable each endowed with continuous derivatives up to *n*-th order, which includes predicates expressing function **comparisons**, **concavity**, **convexity**, **monotonicity strict monotonicity** and **comparisons** between a function (or one of its derivatives) and a real term on closed, open or semi-open intervals, bounded or unbounded.

<ロト < 同ト < 回ト < 回ト = 三日

Introduction	The <i>RDF</i> ⁿ theories	Syntax	Semantics	Decidability	
00	●	OO	00	000000	
Applications	to analysis				

Some decidable fragments of real analysis:

- $RMCF \hookrightarrow RMCF^+$, (continuous functions)
- $RDF \hookrightarrow RDF^+ \hookrightarrow RDF^* \hookrightarrow RDF^n$. (continuous functions with derivatives)

Theory RDF^{*}

(Theory of Reals with *n*-Differentiable Functions -G. Buriola, D. Cantone, G. Cincotti, E. Omodeo, G. Spartà).

An unquantified first-order theory of real functions of a real variable each endowed with continuous derivatives up to *n*-th order, which includes predicates expressing function **comparisons**, **concavity**, **convexity**, **monotonicity strict monotonicity** and **comparisons** between a function (or one of its derivatives) and a real term on closed, open or semi-open intervals, bounded or unbounded.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	The <i>RDF</i> ⁿ theories	Syntax	Semantics	Decidability	
00	●	00	00	000000	
Applications	to analysis				

Some decidable fragments of real analysis:

- $RMCF \hookrightarrow RMCF^+$, (continuous functions)
- $RDF \hookrightarrow RDF^+ \hookrightarrow RDF^* \hookrightarrow RDF^n$. (continuous functions with derivatives)

Theory *RDFⁿ*

(Theory of Reals with *n*-Differentiable Functions -G. Buriola, D. Cantone, G. Cincotti, E. Omodeo, G. Spartà).

An unquantified first-order theory of real functions of a real variable each endowed with continuous derivatives up to *n*-th order, which includes predicates expressing function comparisons, concavity, convexity, monotonicity strict monotonicity and comparisons between a function (or one of its derivatives) and a real term on closed, open or semi-open intervals, bounded or unbounded.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Introduction	The <i>RDF</i> ⁿ theories	Syntax	Semantics	Decidability	Conclusions
00	O	●O	00	000000	O
Syntax					

Enrich Tarski's arithmetic by adding variables and relations concerning function terms.

Syntax:

We have two types of variables:

- numerical variables x, y, z, \ldots , representing real numbers,
- function variables f, g, h, \ldots representing C^n real functions,

and some constant symbols:

• 0 and 1, designating the numbers 0 and 1,

 \bullet the symbols $+\infty$ and $-\infty,$ occurring only as endpoints of interval domains;

out of these we build up two types of terms:

• function terms, obtained from function variables:

f + g and $t \cdot f$,

• numerical terms, obtained by combining numerical variables:

$$t_1 + t_2, t_1 - t_2, t_1 * t_2,$$

• or, by intermixing numerical terms and function terms:

 $\mathfrak{f}(t), D^k[\mathfrak{f}](t),$

Introduction 00	Syntax ●O	Semantics 00	Decidability 000000	
Syntax				

Enrich Tarski's arithmetic by adding variables and relations concerning function terms.

Syntax:

We have two types of variables:

- numerical variables x, y, z, ..., representing real numbers,
- function variables f, g, h, \ldots representing C^n real functions,

and some constant symbols:

• 0 and 1, designating the numbers 0 and 1,

• the symbols $+\infty$ and $-\infty$, occurring only as endpoints of interval domains;

out of these we build up two types of terms:

• function terms, obtained from function variables:

f + g and $t \cdot f$,

• numerical terms, obtained by combining numerical variables:

$$t_1 + t_2, t_1 - t_2, t_1 * t_2,$$

or, by intermixing numerical terms and function terms:

 $f(t), D^k[f](t),$

Introduction	The <i>RDF</i> ⁿ theories	Syntax	Semantics	Decidability	Conclusions
00	O	●O	00	000000	O
Syntax					

Enrich Tarski's arithmetic by adding variables and relations concerning function terms.

Syntax:

We have two types of variables:

- numerical variables x, y, z, \ldots , representing real numbers,
- function variables f, g, h, \ldots representing C^n real functions,

and some constant symbols:

- 0 and 1, designating the numbers 0 and 1,
- the symbols $+\infty$ and $-\infty$, occurring only as endpoints of interval domains;

out of these we build up two types of terms:

• function terms, obtained from function variables:

f+g and $t \cdot f$,

• numerical terms, obtained by combining numerical variables:

```
t_1 + t_2, t_1 - t_2, t_1 * t_2,
```

or, by intermixing numerical terms and function terms:

 $\mathfrak{f}(t), D^k[\mathfrak{f}](t),$

Introduction	The <i>RDF</i> ⁿ theories	Syntax	Semantics	Decidability	Conclusions
00	O	●O	00	000000	O
Syntax					

Enrich Tarski's arithmetic by adding variables and relations concerning function terms.

Syntax:

We have two types of variables:

- numerical variables x, y, z, \ldots , representing real numbers,
- function variables f, g, h, \ldots representing C^n real functions,

and some constant symbols:

• 0 and 1, designating the numbers 0 and 1,

• the symbols $+\infty$ and $-\infty$, occurring only as endpoints of interval domains; out of these we build up two types of terms:

• function terms, obtained from function variables:

f + g and $t \cdot f$,

• numerical terms, obtained by combining numerical variables:

$$t_1 + t_2, t_1 - t_2, t_1 * t_2,$$

• or, by intermixing numerical terms and function terms:

 $\mathfrak{f}(t), D^k[\mathfrak{f}](t),$

Introdu 00	iction The <i>RDF"</i> the O	ories Sy O	yntax ••	Semantics 00	Decidability 000000	Conclusions O
Atc	mic formulas					
	Atomic formulas of R	PDF":				
		$t_1=t_2$,	$t_1>t_2$,			
		$\mathfrak{f}(s)=t$,	$D^k[\mathfrak{f}](s) =$	t,		
		$(\mathfrak{f}=\mathfrak{g})_A$,	$(\mathfrak{f} > \mathfrak{g})_A$,			

- $Up(\mathfrak{f})_A$, $Strict_Up(\mathfrak{f})_A$,
- $\mathsf{Down}(\mathfrak{f})_A$, $\mathsf{Strict}_\mathsf{Down}(\mathfrak{f})_A$,
- $\operatorname{Convex}(\mathfrak{f})_A$, $\operatorname{Strict}_{\operatorname{Convex}}(\mathfrak{f})_A$,
- $Concave(f)_A$, $Strict_Concave(f)_A$,
- $(D^k[\mathfrak{f}]\bowtie t)_A$, with $\bowtie\!\in\!\{<,>,=,\leq,\geq\}$,

where A is a closed, open or semi-open interval, bounded or unbounded.

nac

Introdu 00		Synta: O	x Semantics OO	Decidability 000000	
Ato	mic formulas				
		- 0			
	Atomic formulas of RDF	<i>"</i> :			
		$t_1 = t_2$, t_1	$t_{1} > t_{2}$,		
		$\mathfrak{f}(s)=t$,	$\mathcal{D}^k[\mathfrak{f}](s)=t$,		
		$(\mathfrak{f}=\mathfrak{g})_A$, ($(\mathfrak{f} > \mathfrak{g})_A$,		
		$Up(\mathfrak{f})_A$, \mathfrak{S}	$\operatorname{Strict}_{Up}(\mathfrak{f})_{A}$,		
	C	$\operatorname{Down}(\mathfrak{f})_A$, \mathfrak{S}	$Strict_Down(\mathfrak{f})_A$,		

 $\operatorname{Convex}(\mathfrak{f})_A$, $\operatorname{Strict}_\operatorname{Convex}(\mathfrak{f})_A$,

 $\mathsf{Concave}(\mathfrak{f})_A$, $\mathsf{Strict}_\mathsf{Concave}(\mathfrak{f})_A$,

 $(D^k[\mathfrak{f}] \Join t)_A$, with $\bowtie \in \{<,>,=,\leq,\geq\}$,

where A is a closed, open or semi-open interval, bounded or unbounded.

Derived relators:

$$\begin{array}{ccc} \text{Linear}(\mathfrak{f})_{A} & \leftrightarrow_{\text{Def}} & \text{Convex}(\mathfrak{f})_{A} \wedge \text{Concave}(\mathfrak{f})_{A} \\ (D[\mathfrak{f}] \neq t)_{A} & \leftrightarrow_{\text{Def}} & (D[\mathfrak{f}] < t)_{A} \vee (D[\mathfrak{f}] > t)_{A} \\ (g = \frac{m}{n} \cdot f)_{]-\infty, +\infty[} & \leftrightarrow_{\text{Def}} & (\underbrace{g + \cdots + g}_{n \text{ times}} = \underbrace{f + \cdots + f}_{m \text{ times}})_{]-\infty, +\infty[} \end{array}$$

Introduction 00		Syntax 00	Semantics ●O	Decidability 000000	
Semantics of	RDF"				

- number variables are real numbers;
- function variables are C^n functions from \mathbb{R} to \mathbb{R} ;
- terms: $s \cdot t$, f+g, ..., are interpreted accordingly;
- atomic formulas are true according their analytic "meaning":

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- e.g., $(f > g)_A$ is true if: $\forall x \in \tilde{A} \ \tilde{f}(x) > \tilde{g}(x);$
- other formulas are evaluated according the connectives.

Introduction 00		Syntax 00	Semantics O	Decidability 000000	
Semantics c	of RDF ⁿ				

- number variables are real numbers;
- function variables are C^n functions from \mathbb{R} to \mathbb{R} ;
- terms: $s \cdot t$, f+g, ..., are interpreted accordingly;
- atomic formulas are true according their analytic "meaning":

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- e.g., $(f > g)_A$ is true if: $\forall x \in \tilde{A} \ \tilde{f}(x) > \tilde{g}(x);$
- other formulas are evaluated according the connectives.

Introduction 00		Syntax OO	Semantics ●O	Decidability 000000	
Semantics of	RDF"				

- number variables are real numbers;
- function variables are C^n functions from \mathbb{R} to \mathbb{R} ;
- terms: $s \cdot t$, f+g, ..., are interpreted accordingly;
- atomic formulas are true according their analytic "meaning":

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- e.g., $(f > g)_A$ is true if: $\forall x \in \tilde{A} \ \tilde{f}(x) > \tilde{g}(x)$;
- other formulas are evaluated according the connectives.

Introduction 00		Syntax 00	Semantics ●O	Decidability 000000	
Semantics of	RDF ⁿ				

- number variables are real numbers;
- function variables are C^n functions from \mathbb{R} to \mathbb{R} ;
- terms: $s \cdot t$, f+g, ..., are interpreted accordingly;
- atomic formulas are true according their analytic "meaning":

- e.g., $(f > g)_A$ is true if: $\forall x \in \tilde{A} \ \tilde{f}(x) > \tilde{g}(x);$
- other formulas are evaluated according the connectives.

Introduction 00		Syntax OO	Semantics ●O	Decidability 000000	
Semantics of	RDF"				

- number variables are real numbers;
- function variables are C^n functions from \mathbb{R} to \mathbb{R} ;
- terms: $s \cdot t$, f+g, ..., are interpreted accordingly;
- atomic formulas are true according their analytic "meaning":

- e.g., $(f > g)_A$ is true if: $\forall x \in \tilde{A} \ \tilde{f}(x) > \tilde{g}(x)$;
- other formulas are evaluated according the connectives.

Introduction 00		Syntax 00	Semantics ●O	Decidability 000000	
Semantics of	RDF ⁿ				

- number variables are real numbers;
- function variables are C^n functions from \mathbb{R} to \mathbb{R} ;
- terms: $s \cdot t$, f+g, ..., are interpreted accordingly;
- atomic formulas are true according their analytic "meaning":

- e.g., $(f > g)_A$ is true if: $\forall x \in \tilde{A} \ \tilde{f}(x) > \tilde{g}(x);$
- other formulas are evaluated according the connectives.

Introduction 00		Syntax 00	Semantics •0	Decidability 000000	
Semantics of	RDF ⁿ				

- number variables are real numbers;
- function variables are C^n functions from \mathbb{R} to \mathbb{R} ;
- terms: $s \cdot t$, f+g, ..., are interpreted accordingly;
- atomic formulas are true according their analytic "meaning":

- e.g., $(f > g)_A$ is true if: $\forall x \in \tilde{A} \ \tilde{f}(x) > \tilde{g}(x)$;
- other formulas are evaluated according the connectives.

Introduction 00		Syntax 00	Semantics •0	Decidability 000000	
Semantics of	RDF ⁿ				

- number variables are real numbers;
- function variables are C^n functions from \mathbb{R} to \mathbb{R} ;
- terms: $s \cdot t$, f+g, ..., are interpreted accordingly;
- atomic formulas are true according their analytic "meaning":

- e.g., $(f > g)_A$ is true if: $\forall x \in \tilde{A} \ \tilde{f}(x) > \tilde{g}(x)$;
- other formulas are evaluated according the connectives.

Introduction 00		Syntax 00	Semantics O●	Decidability 000000	
Satisfiability	and Validity				

The decision problem:

Since RDF^n is an unquantified theory, the related decision problem shifts from *truth*-to *validity*- checking.

We want to establish whether or not a formula of RDF^n is valid, i.e., true under any assignment.

Validity and Satisfiability:

A decision algorithm for validity exists if and only if a decision algorithm for satisfiability exists, because " θ is valid if and only if $\neg \theta$ is unsatisfiable."

The decision algorithm: Through the algorithm we transform a formula θ of RDF^n into an equisatisfiable formula ψ which belongs to Tarski's elementary algebra. We then submit ψ to Tarski's decision method.

イロト 不得 トイヨト イヨト

-

Introduction 00		Syntax 00	Semantics O●	Decidability 000000	
Satisfiability	and Validity				

The decision problem:

Since RDF^n is an unquantified theory, the related decision problem shifts from *truth*-to *validity*- checking.

We want to establish whether or not a formula of RDF^n is *valid*, i.e., *true* under any assignment.

Validity and Satisfiability:

A decision algorithm for validity exists if and only if a decision algorithm for satisfiability exists, because " θ is valid if and only if $\neg \theta$ is unsatisfiable."

The decision algorithm: Through the algorithm we transform a formula θ of RDF^n into an equisatisfiable formula ψ which belongs to Tarski's elementary algebra. We then submit ψ to Tarski's decision method.

イロト 不得 トイヨト イヨト

-

Introduction 00		Syntax 00	Semantics O●	Decidability 000000	
Satisfiability	and Validity				

The decision problem:

Since RDF^n is an unquantified theory, the related decision problem shifts from *truth*-to *validity*- checking.

We want to establish whether or not a formula of RDF^n is valid, i.e., true under any assignment.

Validity and Satisfiability:

A decision algorithm for validity exists if and only if a decision algorithm for satisfiability exists, because " θ is valid if and only if $\neg \theta$ is unsatisfiable."

The decision algorithm: Through the algorithm we transform a formula θ of RDF^n into an equisatisfiable formula ψ which belongs to Tarski's elementary algebra. We then submit ψ to Tarski's decision method.

Introduction 00		Syntax 00	Semantics 00	Decidability ●00000	
A few examp	les				

$$\begin{array}{c|cccc} & \mathsf{Linear}(f)_{]-\infty,+\infty[} & \longleftrightarrow & (D^{2}[f]=0)_{]-\infty,+\infty[} \\ & & \left\{ (a < x < b) \land [(\mathsf{S-Convex}(f)_{[a,x]} \land \mathsf{S-Concave}(f)_{[x,b]}) \lor \\ & & (\mathsf{S-Concave}(f)_{[a,x]} \land \mathsf{S-Convex}(f)_{[x,b]})] \right\} & \rightarrow & D^{2}[f](x) = 0 \\ & & \left[(D^{k-1}[f]=y)_{]-\infty,\infty[} & \rightarrow & (D^{k}[f]=0)_{]-\infty,\infty[} \right] \land \\ & & \left\{ (D^{k}[f]=0)_{]-\infty,\infty[} & \rightarrow & [D^{k-1}[f](x) = y \rightarrow & (D^{k-1}[f]=y)_{]-\infty,\infty[} \right] \right\} \\ & & & \left\{ (a < x < b) \land D[f](x) = 0 \land (D^{2}[f] \ge 0)_{[a,b]} \land f(x) = y \right\} & \rightarrow & (f \ge y)_{[a,b]} \\ & & \left\{ (a < x < b) \land D[f](x) = 0 \land (D^{2}[f] \le 0)_{[a,b]} \land f(x) = y \right\} & \rightarrow & (f \le y)_{[a,b]} \\ & & \left\{ \begin{array}{c} (a < x < b) \land D[f](x) = 0 \land (D^{2}[f] \le 0)_{[a,b]} \land f(x) = y \\ & (f \le y)_{[a,b]} \lor & (f \le y)_{[a,b]} \end{array} \right\} \\ & & & \left\{ \begin{array}{c} (a < x < b) \land D[f](x) = 0 \land D^{2}[f](x) = 0 \land \\ & [(D^{3}[f] < 0)_{[a,b]} \lor & (D^{3}[f] > 0)_{[a,b]} \end{array} \right\} \\ & & & & \\ \end{array} \right\} \\ & & & \left\{ \begin{array}{c} (\mathsf{S-Convex}(f)_{[a,x]} \land \mathsf{S-Convex}(f)_{[x,b]}) \lor \\ & (\mathsf{S-Convex}(f)_{[a,x]} \land \mathsf{S-Convex}(f)_{[x,b]}) \lor \end{array} \right\} . \end{array} \right. \end{array}$$

シック 単三 (川田) (田) (日) (日)

Introduction 00		Syntax 00	Semantics 00	Decidability O●OOOO	
The algor	ithm at work				

 $\left\{ (a < x < b) \land \text{ S_Convex}(f)_{[a,x]} \land \text{ S_Concave}(f)_{[x,b]} \right\} \quad \rightarrow \quad D^2[f](x) = 0,$

Step 0: consider the negation of our formula,

 $(a < x < b) \land S_{-}Convex(f)_{[a,x]} \land S_{-}Concave(f)_{[x,b]} \land D^{2}[f](x) \neq 0.$

Step 1: do some preliminaries in case of not closed intervals.

Step 2: negative literals with intervals are substituted with suitable existential conditions.

	$S_Convex(f)_{[v_1,v_2]}$			
$f(v_1) = y_1^f$	$f(v_2) = y_2^f$	$f(v_3) = y_3^f$		
$D^1[f](v_1)=t_1^f$				

Introduction 00		Syntax 00	Semantics 00	Decidability O●OOOO	
The algor	ithm at work				

 $\left\{ (a < x < b) \ \land \ \mathsf{S}_\mathsf{Convex}(f)_{[a,x]} \ \land \ \mathsf{S}_\mathsf{Concave}(f)_{[x,b]} \right\} \quad \rightarrow \quad D^2[f](x) = 0,$

Step 0: consider the negation of our formula,

 $(a < x < b) \land S_Convex(f)_{[a,x]} \land S_Concave(f)_{[x,b]} \land D^2[f](x) \neq 0.$

Step 1: do some preliminaries in case of not closed intervals.

Step 2: negative literals with intervals are substituted with suitable existential conditions.

	$S_Convex(f)_{[v_1,v_2]}$			
$f(v_1) = y_1^f$	$f(v_2) = y_2^f$	$f(v_3) = y_3^f$		
$D^1[f](v_1)=t_1^f$				

Introduction 00		Syntax 00	Semantics 00	Decidability O●OOOO	
The algor	ithm at work				

 $\left\{(a < x < b) \ \land \ \mathsf{S}_{-}\mathsf{Convex}(f)_{[a,x]} \ \land \ \mathsf{S}_{-}\mathsf{Concave}(f)_{[x,b]}\right\} \quad \rightarrow \quad D^2[f](x) = 0,$

Step 0: consider the negation of our formula,

 $(a < x < b) \land S_Convex(f)_{[a,x]} \land S_Concave(f)_{[x,b]} \land D^2[f](x) \neq 0.$

Step 1: do some preliminaries in case of not closed intervals.

Step 2: negative literals with intervals are substituted with suitable existential conditions.

	$S_{-}Convex(f)_{[v_1,v_2]}$			
$f(v_1) = y_1^f$	$f(v_2) = y_2^f$	$f(v_3) = y_3^f$		
$D^1[f](v_1) = t_1^f$				

Introduction 00		Syntax 00	Semantics 00	Decidability O●OOOO	
The algor	ithm at work				

 $\left\{(a < x < b) \ \land \ \mathsf{S}_\mathsf{Convex}(f)_{[a,x]} \ \land \ \mathsf{S}_\mathsf{Concave}(f)_{[x,b]}\right\} \quad \to \quad D^2[f](x) = 0,$

Step 0: consider the negation of our formula,

 $(a < x < b) \land S_Convex(f)_{[a,x]} \land S_Concave(f)_{[x,b]} \land D^2[f](x) \neq 0.$

Step 1: do some preliminaries in case of not closed intervals.

Step 2: negative literals with intervals are substituted with suitable existential conditions.

	$S_{-}Convex(f)_{[v_1,v_2]}$			
$f(v_1) = y_1^f$	$f(v_2) = y_2^f$	$f(v_3) = y_3^f$		
$D^1[f](v_1)=t_1^f$				

Introduction 00		Syntax 00	Semantics 00	Decidability O●OOOO	
The algor	ithm at work				

 $\left\{(a < x < b) \ \land \ \mathsf{S}_{-}\mathsf{Convex}(f)_{[a,x]} \ \land \ \mathsf{S}_{-}\mathsf{Concave}(f)_{[x,b]}\right\} \quad \rightarrow \quad D^2[f](x) = 0,$

Step 0: consider the negation of our formula,

 $(a < x < b) \land S_{\text{Convex}}(f)_{[a,x]} \land S_{\text{Concave}}(f)_{[x,b]} \land D^{2}[f](x) \neq 0.$

Step 1: do some preliminaries in case of not closed intervals.

Step 2: negative literals with intervals are substituted with suitable existential conditions.

Step 3: evaluate all function variables over the so-called "domain variables". Let us do the renaming: $a \rightsquigarrow v_1, x \rightsquigarrow v_2, b \rightsquigarrow v_3$. From the previous formula we get the following:

Introduction 00		Syntax 00	Semantics 00	Decidability 00●000	
The algorithm	n at work (2)				

Step 4: replace all literals involving functional terms by algebraic conditions,

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへぐ

Introduction 00	Syntax 00	Semantics 00	Decidability 000●00	
The result				

The output of the algorithm is a conjunction formula ψ of the Elementary Algebra of Real numbers (*EAR*), decidable by Tarski's well-know result. It contains the following unsatisfiable conjunction:

$$s_2^f \neq 0 \land s_2^f \geq 0 \land s_2^f \leq 0.$$

Thus,

 $(a < x < b) \land S_{-}Convex(f)_{[a,x]} \land S_{-}Concave(f)_{[x,b]} \land D^{2}[f](x) \neq 0.$ is unsatisfiable \Downarrow

 $\{(a < x < b) \land S_{-}Convex(f)_{[a,x]} \land S_{-}Concave(f)_{[x,b]}\} \rightarrow D^{2}[f](x) = 0,$ is valid.

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Introduction 00	Syntax 00	Semantics 00	Decidability 000●00	
The result				

The output of the algorithm is a conjunction formula ψ of the Elementary Algebra of Real numbers (*EAR*), decidable by Tarski's well-know result. It contains the following unsatisfiable conjunction:

$$s_2^f \neq 0 \land s_2^f \geq 0 \land s_2^f \leq 0.$$

Thus,

$$(a < x < b) \land S_{Convex}(f)_{[a,x]} \land S_{Concave}(f)_{[x,b]} \land D^{2}[f](x) \neq 0.$$

is unsatisfiable

$$\begin{split} \big\{ (a < x < b) \land S_{-} \text{Convex}(f)_{[a,x]} \land S_{-} \text{Concave}(f)_{[x,b]} \big\} & \to \quad D^{2}[f](x) = 0, \\ & \text{ is valid.} \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction 00	Syntax 00	Semantics 00	Decidability 000●00	
The result				

The output of the algorithm is a conjunction formula ψ of the Elementary Algebra of Real numbers (*EAR*), decidable by Tarski's well-know result. It contains the following unsatisfiable conjunction:

$$s_2^f \neq 0 \land s_2^f \geq 0 \land s_2^f \leq 0.$$

Thus,

$$(a < x < b) \land S_{\text{Convex}}(f)_{[a,x]} \land S_{\text{Concave}}(f)_{[x,b]} \land D^{2}[f](x) \neq 0.$$

is unsatisfiable
 \Downarrow

$$\left\{ (a < x < b) \land S_{-}Convex(f)_{[a,x]} \land S_{-}Concave(f)_{[x,b]} \right\} \rightarrow D^{2}[f](x) = 0,$$
 is valid.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction 00	Syntax OO	Semantics 00	Decidability 0000€0	
Correctness				

The correctness of the algorithm amounts to the equisatisfiability of input formula $\neg \theta$:

 $(a < x < b) \land S_Convex(f)_{[a,x]} \land S_Concave(f)_{[x,b]} \land D^2[f](x) \neq 0.$

and the output formula $\psi,$ in particular with respect the conjunction

$$s_2^f \neq 0 \ \land \ s_2^f \geq 0 \ \land \ s_2^f \leq 0.$$

 $\neg \theta \Rightarrow \psi$: given a model of $\neg \theta$, viz. three interpreting functions f, g, h and real values for the numerical variables, we must find a set of real numbers satisfying ψ .

 $\psi \Rightarrow \neg \theta$: given a model of ψ , viz. a set of real numbers satisfying some algebraic conditions, we must define real functions satisfying the analytics properties of $\neg \theta$. For the function variable f we take a suitable interpolation function between points (a, v_a^f) .

We have produced explicitly an *ad hoc* interpolation method for the case n = 1; when n = 2, we could borrow an interpolation method due to C. Manni; when n > 2, we hope for, and remain in debt with the listener of, a proof of existence of the suitable interpolating function.

Introduction 00		Syntax OO	Semantics 00	Decidability 00000●	
The threshold	l of undecidability				

Tarski himself showed that decidability of his full elementary algebra of real numbers would be disrupted if its language were enriched with a periodic real function, e.g., $\sin x$.

D. Richardson proved the undecidability of the existential theory of reals extended with the numbers log 2 and π , and with the functions e^x , $\sin x$; these results have been subsequently improved by B. F. Caviness, P. S. Wang and M. Laczkovich.

In consequence of Laczkovich's result and of our reduction of RDF^n to Tarskian algebra, any extension of RDF^n enabling us to express $\sin x$ turns out to be undecidable. For example, an atomic formula $(D^2[f] = g)_A$ for equality between a second derivative and a function would allow one to specify $f = \sin x$ through the differential characterization:

$$f(0)=0 \;\; D^1[f](0)=1 \;\; (D^2[f]=-f)_{]-\infty,+\infty[} \; .$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Establishing whether or not an analogous extension of RDF^1 is decidable is harder.

Introduction		Syntax	Semantics	Decidability	Conclusions
00		00	00	000000	•
Extensions ar	nd applications				

If the theory RDF^{∞} , whose set of formulas is the union of RDF^n formulas for all n;

2) decision methods regarding differentiable functions from \mathbb{R}^n to \mathbb{R}^m .

Applications in automated theorem proving:

- proof verification of mathematical theories;
- program verification and hardware validation.

RMCF⁺, *RDF*^{*} and *RDF*ⁿ should be integrated in the **proof-checker** ÆtnaNova, which is under development.

<ロト < 同ト < 回ト < 回ト = 三日

Introduction		Syntax	Semantics	Decidability	Conclusions
00		00	00	000000	•
Extensions ar	nd applications				

- **()** the theory RDF^{∞} , whose set of formulas is the union of RDF^n formulas for all *n*;
- **2** decision methods regarding differentiable functions from \mathbb{R}^n to \mathbb{R}^m .

Applications in automated theorem proving:

- proof verification of mathematical theories;
- program verification and hardware validation.

RMCF⁺, *RDF*^{*} and *RDF*ⁿ should be integrated in the **proof-checker** ÆtnaNova, which is under development.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction 00		Syntax 00	Semantics 00	Decidability 000000	Conclusions
Extensions ar	nd applications				

- **()** the theory RDF^{∞} , whose set of formulas is the union of RDF^n formulas for all *n*;
- **2** decision methods regarding differentiable functions from \mathbb{R}^n to \mathbb{R}^m .

Applications in automated theorem proving:

- proof verification of mathematical theories;
- program verification and hardware validation.

RMCF⁺, *RDF*^{*} and *RDF*ⁿ should be integrated in the **proof-checker** ÆtnaNova, which is under development.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction 00		Syntax 00	Semantics 00	Decidability 000000	Conclusions
Extensions ar	nd applications				

- **()** the theory RDF^{∞} , whose set of formulas is the union of RDF^n formulas for all n;
- **2** decision methods regarding differentiable functions from \mathbb{R}^n to \mathbb{R}^m .

Applications in automated theorem proving:

- proof verification of mathematical theories;
- program verification and hardware validation.

RMCF⁺, *RDF*^{*} and *RDF*ⁿ should be integrated in the **proof-checker** ÆtnaNova, which is under development.

Introduction 00		Syntax 00	Semantics 00	Decidability 000000	Conclusions
Extensions ar	nd applications				

- **()** the theory RDF^{∞} , whose set of formulas is the union of RDF^n formulas for all *n*;
- **2** decision methods regarding differentiable functions from \mathbb{R}^n to \mathbb{R}^m .

Applications in automated theorem proving:

- proof verification of mathematical theories;
- program verification and hardware validation.

RMCF⁺, *RDF*^{*} and *RDF*ⁿ should be integrated in the **proof-checker** ÆtnaNova, which is under development.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○