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Tarski’s theory of reals - Description

Tarski’s theory of reals
(A. Tarski, 1939/1951).

A first-order (fully quantified) theory of real numbers with operations + , · , − and
relations > , < , = .

An example:
∀a ∀b ∀c ∀d [ a ̸= 0→ ∃x (ax3 + bx2 + cx + d = 0 ) ]

Theorem (Tarski, 1951)

Tarski’s theory of reals is decidable.

Extensions:
Complex numbers, n-dimensional vectors, plane geometry, space geometry,
n-dimensional geometry, non-Euclidean geometries, projective geometry.

Limitations:
Tarski’s theory of reals can not express the predicate isInteger(x).
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Applications to analysis

Some decidable fragments of real analysis:

RMCF ↪→ RMCF+, (continuous functions)

RDF ↪→ RDF+ ↪→ RDF∗ ↪→ RDF n. (continuous functions with derivatives)

Theory RDF n

(Theory of Reals with n-Differentiable Functions -
G. Buriola, D. Cantone, G. Cincotti, E. Omodeo, G. Spartà).

An unquantified first-order theory of real functions of a real variable each endowed
with continuous derivatives up to n-th order, which includes predicates expressing
function comparisons, concavity, convexity, monotonicity strict monotonicity and

comparisons between a function (or one of its derivatives) and a real term on closed,
open or semi-open intervals, bounded or unbounded.
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Syntax

Idea:
Enrich Tarski’s arithmetic by adding variables and relations concerning function terms.

Syntax:
We have two types of variables:

numerical variables x , y , z, . . . , representing real numbers,

function variables f , g , h, . . . representing Cn real functions,

and some constant symbols:

0 and 1, designating the numbers 0 and 1,

the symbols +∞ and −∞, occurring only as endpoints of interval domains;

out of these we build up two types of terms:

function terms, obtained from function variables:

f + g and t · f ,

numerical terms, obtained by combining numerical variables:

t1 + t2, t1 − t2, t1 ∗ t2,

or, by intermixing numerical terms and function terms:

f(t), Dk [f](t),
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Atomic formulas

Atomic formulas of RDF n:

t1 = t2 , t1 > t2 ,

f(s) = t , Dk [f](s) = t ,

(f = g)A , (f > g)A ,

Up(f)A , Strict Up(f)A ,

Down(f)A , Strict Down(f)A ,

Convex(f)A , Strict Convex(f)A ,

Concave(f)A , Strict Concave(f)A ,

(Dk [f] ▷◁ t)A , with ▷◁∈{<,>,=,≤,≥} ,

where A is a closed, open or semi-open interval, bounded or unbounded.

Derived relators:

Linear(f)A ↔Def Convex(f)A ∧ Concave(f)A
(D[f] ̸= t)A ↔Def (D[f] < t)A ∨ (D[f] > t)A(

g = m
n
· f

)
]−∞,+∞[

↔Def

(
g + · · ·+ g︸ ︷︷ ︸

n times

= f + · · ·+ f︸ ︷︷ ︸
m times

)
]−∞,+∞[
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Semantics of RDF n

In the standard semantics for RDF n:

number variables are real numbers;

function variables are Cn functions from R to R;

terms: s · t, f+g, . . . , are interpreted accordingly;

atomic formulas are true according their analytic “meaning”:

e.g., (f > g)A is true if: ∀x ∈ Ã f̃ (x) > g̃(x);

other formulas are evaluated according the connectives.
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Satisfiability and Validity

The decision problem:
Since RDF n is an unquantified theory, the related decision problem shifts from truth-
to validity- checking.
We want to establish whether or not a formula of RDF n is valid, i.e., true under any
assignment.

Validity and Satisfiability:
A decision algorithm for validity exists if and only if a decision algorithm for
satisfiability exists, because “θ is valid if and only if ¬θ is unsatisfiable.”

The decision algorithm: Through the algorithm we transform a formula θ of RDF n

into an equisatisfiable formula ψ which belongs to Tarski’s elementary algebra.
We then submit ψ to Tarski’s decision method.
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A few examples

1 Linear(f )]−∞,+∞[ ←→
(
D2[f ] = 0

)
]−∞,+∞[

.

2
{
(a < x < b) ∧

[
(S Convex(f )[a,x] ∧ S Concave(f )[x,b]) ∨

(S Concave(f)[a,x] ∧ S Convex(f )[x,b])
]}
→ D2[f ](x) = 0 .

3

[(
Dk−1[f ] = y

)
]−∞,∞[

→
(
Dk [f ] = 0

)
]−∞,∞[

]
∧{(

Dk [f ] = 0
)
]−∞,∞[

→
[
Dk−1[f ](x) = y →

(
Dk−1[f ] = y

)
]−∞,∞[

]}
.

4 {
(a < x < b) ∧ D[f ](x) = 0 ∧

(
D2[f ] ≥ 0

)
[a,b]

∧ f (x) = y
}

→ (f ≥ y)[a,b];{
(a < x < b) ∧ D[f ](x) = 0 ∧

(
D2[f ] ≤ 0

)
[a,b]

∧ f (x) = y
}

→ (f ≤ y)[a,b].

5 {
(a < x < b) ∧ D[f ](x) = 0 ∧ D2[f ](x) = 0 ∧[(

D3[f ] < 0
)
[a,b]

∨
(
D3[f ] > 0

)
[a,b]

] }
→

{ (
S Convex(f )[a,x] ∧ S Concave(f )[x,b]

)
∨(

S Concave(f )[a,x] ∧ S Convex(f )[x,b]
) }

.
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The algorithm at work

We briefly illustrate the algorithm in the case of one of the previous examples:{
(a < x < b) ∧ S Convex(f )[a,x] ∧ S Concave(f )[x,b]

}
→ D2[f ](x) = 0,

Step 0: consider the negation of our formula,

(a < x < b) ∧ S Convex(f )[a,x] ∧ S Concave(f )[x,b] ∧ D2[f ](x) ̸= 0.

Step 1: do some preliminaries in case of not closed intervals.

Step 2: negative literals with intervals are substituted with suitable existential
conditions.

Step 3: evaluate all function variables over the so-called “domain variables”. Let us
do the renaming: a ⇝ v1, x ⇝ v2, b ⇝ v3. From the previous formula we get the
following:

(v1 < v2 < v3) ∧ S Convex(f )[v1,v2] ∧ S Concave(f )[v2,v3] ∧ D2[f ](v2) ̸= 0 ∧

f (v1) = y f
1 ∧ f (v2) = y f

2 ∧ f (v3) = y f
3 ∧

D1[f ](v1) = t f1 ∧ D1[f ](v2) = t f2 ∧ D1[f ](v3) = t f3 ∧
D2[f ](v1) = s f1 ∧ D2[f ](v2) = s f2 ∧ D2[f ](v3) = s f3 ∧ s f2 ̸= 0.
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The algorithm at work (2)

Step 4: replace all literals involving functional terms by algebraic conditions,

(v1 < v2 < v3) ∧ s f2 ̸= 0 ∧
tf1 <

y f2−y f1
v2−v1

< tf2 ∧ s f1 ≥ 0 ∧ s f2 ≥ 0 ∧

tf2 >
y f3−y f2
v3−v2

> tf3 ∧ s f2 ≤ 0 ∧ s f3 ≤ 0.
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The result

The output of the algorithm is a conjunction formula ψ of the Elementary Algebra of
Real numbers (EAR), decidable by Tarski’s well-know result.
It contains the following unsatisfiable conjunction:

s f2 ̸= 0 ∧ s f2 ≥ 0 ∧ s f2 ≤ 0.

Thus,

(a < x < b) ∧ S Convex(f )[a,x] ∧ S Concave(f )[x,b] ∧ D2[f ](x) ̸= 0.

is unsatisfiable

⇓

{
(a < x < b) ∧ S Convex(f )[a,x] ∧ S Concave(f )[x,b]

}
→ D2[f ](x) = 0,

is valid.
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Correctness

The correctness of the algorithm amounts to the equisatisfiability of input formula ¬θ:

(a < x < b) ∧ S Convex(f )[a,x] ∧ S Concave(f )[x,b] ∧ D2[f ](x) ̸= 0.

and the output formula ψ, in particular with respect the conjunction

s f2 ̸= 0 ∧ s f2 ≥ 0 ∧ s f2 ≤ 0.

¬θ ⇒ ψ: given a model of ¬θ, viz. three interpreting functions f , g , h and real values
for the numerical variables, we must find a set of real numbers satisfying ψ.

ψ ⇒ ¬θ: given a model of ψ, viz. a set of real numbers satisfying some algebraic
conditions, we must define real functions satisfying the analytics properties of ¬θ.
For the function variable f we take a suitable interpolation function between points
(a, v f

a ).

We have produced explicitly an ad hoc interpolation method for the case n = 1; when
n = 2, we could borrow an interpolation method due to C. Manni; when n > 2, we
hope for, and remain in debt with the listener of, a proof of existence of the suitable
interpolating function.
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The threshold of undecidability

Tarski himself showed that decidability of his full elementary algebra of real numbers
would be disrupted if its language were enriched with a periodic real function, e.g.,
sin x .
D. Richardson proved the undecidability of the existential theory of reals extended
with the numbers log 2 and π, and with the functions ex , sin x ; these results have
been subsequently improved by B. F. Caviness, P. S. Wang and M. Laczkovich.

In consequence of Laczkovich’s result and of our reduction of RDF n to Tarskian
algebra, any extension of RDF n enabling us to express sin x turns out to be
undecidable. For example, an atomic formula

(
D2[f ] = g

)
A
for equality between a

second derivative and a function would allow one to specify f = sin x through the
differential characterization:

f (0) = 0 D1[f ](0) = 1 (D2[f ] = −f )]−∞,+∞[ .

Establishing whether or not an analogous extension of RDF 1 is decidable is harder.
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Extensions and applications

Other extensions of EAR could be:

1 the theory RDF∞, whose set of formulas is the union of RDF n formulas for all n;

2 decision methods regarding differentiable functions from Rn to Rm.

Applications in automated theorem proving:

proof verification of mathematical theories;

program verification and hardware validation.

RMCF+, RDF∗ and RDF n should be integrated in the proof-checker ÆtnaNova,
which is under development.

Thank you!
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