On generalised Ackermann encodings - the basis issue

Simone Boscaratto, Eugenio G. Omodeo, Alberto Policriti

Università degli Studi di Trieste, Università degli Studi di Udine

$$
\text { June 26th, } 2024
$$

Introduction

Why multisets?

- They find application in computer sciences as a generalisation of lists.
- Hereditarily finite multisets are used to write a simpler termination function w.r.t. its equivalent which uses hereditarily finite sets only.

Why hypersets?

Introduction

Why multisets?

- They find application in computer sciences as a generalisation of lists.
- Hereditarily finite multisets are used to write a simpler termination function w.r.t. its equivalent which uses hereditarily finite sets only.

Why hypersets?

Introduction

Why multisets?

- They find application in computer sciences as a generalisation of lists.
- Hereditarily finite multisets are used to write a simpler termination function w.r.t. its equivalent which uses hereditarily finite sets only.

Why hypersets?

Introduction

Why multisets?

- They find application in computer sciences as a generalisation of lists.
- Hereditarily finite multisets are used to write a simpler termination function w.r.t. its equivalent which uses hereditarily finite sets only.
Their encoding could help to develop a unique formalisation of the theory.

Why hypersets?

Introduction

Why multisets?

- They find application in computer sciences as a generalisation of lists.
- Hereditarily finite multisets are used to write a simpler termination function w.r.t. its equivalent which uses hereditarily finite sets only.
Their encoding could help to develop a unique formalisation of the theory.

Why hypersets?

- They admit cicles in the membership relation (non-wellfoundedness); bisimilarity is assumed as equality criterion.

Introduction

Why multisets?

- They find application in computer sciences as a generalisation of lists.
- Hereditarily finite multisets are used to write a simpler termination function w.r.t. its equivalent which uses hereditarily finite sets only.
Their encoding could help to develop a unique formalisation of the theory.

Why hypersets?

- They admit cicles in the membership relation (non-wellfoundedness); bisimilarity is assumed as equality criterion.
- Hereditarily finite hypersets can represent finite state automata or, more generally, graphs labelled on edges.

Introduction

Why multisets?

- They find application in computer sciences as a generalisation of lists.
- Hereditarily finite multisets are used to write a simpler termination function w.r.t. its equivalent which uses hereditarily finite sets only.
Their encoding could help to develop a unique formalisation of the theory.

Why hypersets?

- They admit cicles in the membership relation (non-wellfoundedness); bisimilarity is assumed as equality criterion.
- Hereditarily finite hypersets can represent finite state automata or, more generally, graphs labelled on edges.
Their encoding would be useful to efficiently compute bisimulations, thus to tackle DFA minimisation (related to the graph isomorphism problem).

Hereditarily finite sets

\square

Hereditarily finite sets

Definition (Hereditarily finite sets)

$$
\mathrm{HF}_{n}=\left\{\begin{array}{ll}
\emptyset & \text { if } n=0 \\
\mathscr{P}\left(\mathrm{HF}_{n-1}\right) & \text { if } n \in \mathbb{N}^{+},
\end{array} \quad \mathrm{HF}=\bigcup_{n \in \mathbb{N}} \mathrm{HF}_{n}\right.
$$

defines the cumulative hierarchy of the hereditarily finite sets.
Given $h \in \mathrm{HF}$, its rank $\operatorname{rk}(h)$ is defined as the least integer r such that $h \in \mathrm{HF}_{r+1}$.

Hereditarily finite sets

Definition (Hereditarily finite sets)

$$
\mathrm{HF}_{n}=\left\{\begin{array}{ll}
\emptyset & \text { if } n=0 \\
\mathscr{P}\left(\mathrm{HF}_{n-1}\right) & \text { if } n \in \mathbb{N}^{+},
\end{array} \quad \mathrm{HF}=\bigcup_{n \in \mathbb{N}} \mathrm{HF}_{n}\right.
$$

defines the cumulative hierarchy of the hereditarily finite sets.
Given $h \in \mathrm{HF}$, its rank $\operatorname{rk}(h)$ is defined as the least integer r such that $h \in \mathrm{HF}_{r+1}$.

Example
$\emptyset \quad\{\emptyset\} \quad\{\{\emptyset\}\} \quad\{\{\emptyset\}, \emptyset\} \quad\{\{\{\emptyset\}\}\} \quad\{\{\{\emptyset\}\}, \emptyset\} \quad\{\{\{\emptyset\}\},\{\emptyset\}\} \quad \ldots$

Multisets

or equivalently

up to any permutation, defines the multiset M containing the objects O_{1}, \ldots, O_{n} with multiplicities m_{1}, \ldots, m_{n} respectively. The multiplicity map of M and its multiset membership relation are then defined as

Multisets

Definition (Multisets)

Let O_{1}, \ldots, O_{n} be n distinct objects and let $m_{1}, \ldots, m_{n} \in \mathbb{N}^{+}$be positive integers; then the list

$$
M=[\underbrace{O_{1}, \ldots, O_{1}}_{m_{1}}, \ldots, \underbrace{O_{n}, \ldots, O_{n}}_{m_{n}}],
$$

or equivalently

$$
M=\left\{{ }^{m_{1}} O_{1}, \ldots,{ }^{m_{n}} O_{n}\right\},
$$

up to any permutation, defines the multiset M containing the objects O_{1}, \ldots, O_{n} with multiplicities m_{1}, \ldots, m_{n} respectively. The multiplicity map of M and its multiset membership relation are then defined as

$$
\mu_{M}\left(O_{i}\right)=m_{i} \quad \Longleftrightarrow \quad O_{i}{ }^{m_{i}} \in M
$$

Hereditarily finite multisets

Definition (Hereditarily finite multisets)

defines the cumulative hierarchy of the hereditarily finite multisets. Given $H \in \mathrm{HF}^{\mu}$, its rank $\operatorname{rk}(H)$ is the least integer r such that $H \in \mathrm{HF}^{\mu}$

Hereditarily finite multisets

Definition (μ-powerset)
Given a multiset X, define

$$
\begin{aligned}
\mathscr{P}^{\mu}(X)=\left\{\left\{^{m_{1}} x_{1}, \ldots,{ }^{m_{n}} x_{n}\right\} \mid x_{1}, \ldots\right. & , x_{n} \in X \wedge(\forall i \neq j)\left(x_{i} \neq x_{j}\right) \\
& \left.\wedge m_{1}, \ldots, m_{n} \in \mathbb{N}^{+} \wedge n \in \mathbb{N}\right\} .
\end{aligned}
$$

defines the cumulative hierarchy of the hereditarily finite multisets.

Hereditarily finite multisets

Definition (μ-powerset)
Given a multiset X, define

$$
\begin{aligned}
\mathscr{P}^{\mu}(X)=\left\{\left\{^{m_{1}} x_{1}, \ldots,{ }^{m_{n}} x_{n}\right\} \mid x_{1}, \ldots,\right. & x_{n} \in X \wedge(\forall i \neq j)\left(x_{i} \neq x_{j}\right) \\
& \left.\wedge m_{1}, \ldots, m_{n} \in \mathbb{N}^{+} \wedge n \in \mathbb{N}\right\} .
\end{aligned}
$$

Definition (Hereditarily finite multisets)

$$
\mathrm{HF}_{n}^{\mu}=\left\{\begin{array}{ll}
\emptyset & \text { if } n=0 \\
\mathscr{P}^{\mu}\left(\mathrm{HF}_{n-1}^{\mu}\right) & \text { if } n \in \mathbb{N}^{+},
\end{array} \quad \mathrm{HF}^{\mu}=\bigcup_{n \in \mathbb{N}} \mathrm{HF}_{n}^{\mu}\right.
$$

defines the cumulative hierarchy of the hereditarily finite multisets. Given $H \in \mathrm{HF}^{\mu}$, its rank $\operatorname{rk}(H)$ is the least integer r such that $H \in \mathrm{HF}_{r+1}^{\mu}$.

Bisimilarity

The largest of all bisimulations on \mathcal{M} (relative to inclusion) is the following equivalence relation.

Definition (Bisimilarity)

Bisimilarity

Definition (Bisimulation)
A dyadic relation b on the finite set V of the nodes of a directed graph $\mathcal{M}=(V, E)$ is said to be a bisimulation on \mathcal{M} if $u_{0} b u_{1}$ always implies that

- for every child v_{1} of u_{1}, u_{0} has at least one child v_{0} s.t. $v_{0} b v_{1}$, and
- for every child v_{0} of u_{0}, u_{1} has at least one child v_{1} s.t. $v_{0} b v_{1}$.

Bisimilarity

Definition (Bisimulation)

A dyadic relation b on the finite set V of the nodes of a directed graph $\mathcal{M}=(V, E)$ is said to be a bisimulation on \mathcal{M} if $u_{0} b u_{1}$ always implies that

- for every child v_{1} of u_{1}, u_{0} has at least one child v_{0} s.t. $v_{0} b v_{1}$, and
- for every child v_{0} of u_{0}, u_{1} has at least one child v_{1} s.t. $v_{0} b v_{1}$.

The largest of all bisimulations on \mathcal{M} (relative to inclusion) is the following equivalence relation.

Definition (Bisimilarity)
The bisimilarity of a digraph \mathcal{M} whose set V of nodes is finite is the dyadic relation $\equiv_{\mathcal{M}}$ over V such that $u \equiv_{\mathcal{M}} v$ holds between u, v in V if and only if $u b v$ holds for some bisimulation b on \mathcal{M}.

Hereditarily finite rational hypersets

Hereditarily finite rational hypersets

Definition (Hereditarily finite rational hyperset)
ς_{0} is said to be an hereditarily finite rational hyperset if it can be described by a finite set system whose transitive closure is still finite:

$$
\mathscr{S}\left(\varsigma_{0}, \varsigma_{1}, \ldots, \varsigma_{n}\right)=\left\{\begin{array}{c}
\varsigma_{0}=\left\{\varsigma_{0,1}, \ldots, \varsigma_{0, m_{0}}\right\} \\
\varsigma_{1}=\left\{\varsigma_{1,1}, \ldots, \varsigma_{1, m_{1}}\right\} \\
\vdots \\
\varsigma_{n}=\left\{\varsigma_{n, 1}, \ldots, \varsigma_{n, m_{n}}\right\}
\end{array}\right.
$$

with $\varsigma_{i, j} \in\left\{\varsigma_{0}, \varsigma_{1}, \ldots, \varsigma_{n}\right\}$. H.f. rational hypersets are denoted by $\mathrm{HF}^{1 / 2}$.

Hereditarily finite rational hypersets

Definition (Hereditarily finite rational hyperset)
ς_{0} is said to be an hereditarily finite rational hyperset if it can be described by a finite set system whose transitive closure is still finite:

$$
\mathscr{S}\left(\varsigma_{0}, \varsigma_{1}, \ldots, \varsigma_{n}\right)=\left\{\begin{array}{c}
\varsigma_{0}=\left\{\varsigma_{0,1}, \ldots, \varsigma_{0, m_{0}}\right\} \\
\varsigma_{1}=\left\{\varsigma_{1,1}, \ldots, \varsigma_{1, m_{1}}\right\} \\
\vdots \\
\varsigma_{n}=\left\{\varsigma_{n, 1}, \ldots, \varsigma_{n, m_{n}}\right\}
\end{array}\right.
$$

with $\varsigma_{i, j} \in\left\{\varsigma_{0}, \varsigma_{1}, \ldots, \varsigma_{n}\right\}$. H.f. rational hypersets are denoted by $\mathrm{HF}^{1 / 2}$.

Example

The hyperset $\Omega=\{\Omega\}=\{\{\Omega\}\}=\{\{\{\cdots\}\}\}$ is the one solving the set-theoretic equation $\varsigma=\{\varsigma\}$.

The Ackermann encoding of HF

Remark

The Ackermann encoding of HF

Definition (Ackermann encoding of HF)

$$
\mathbb{N}_{A}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{\mathbb{N}_{A}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}
$$

defines the Ackermann encoding of hereditarily finite sets.

The Ackermann encoding of HF

Definition (Ackermann encoding of HF)

$$
\mathbb{N}_{A}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{\mathbb{N}_{A}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}
$$

defines the Ackermann encoding of hereditarily finite sets.

Remark

- \mathbb{N}_{A} is a bijection between HF and \mathbb{N}.

The Ackermann encoding of HF

Definition (Ackermann encoding of HF)

$$
\mathbb{N}_{A}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{\mathbb{N}_{A}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}
$$

defines the Ackermann encoding of hereditarily finite sets.

Remark

- \mathbb{N}_{A} is a bijection between HF and \mathbb{N}.
- \mathbb{N}_{A} gives a natural, total ordering to HF.

The Ackermann encoding of HF

Definition (Ackermann encoding of HF)

$$
\mathbb{N}_{A}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{\mathbb{N}_{A}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}
$$

defines the Ackermann encoding of hereditarily finite sets.

Remark

- \mathbb{N}_{A} is a bijection between HF and \mathbb{N}.
- \mathbb{N}_{A} gives a natural, total ordering to HF.
- $h^{\prime} \in h$ for $h, h^{\prime} \in \mathrm{HF}$ if and only if there is a ' 1 ' at position $\mathbb{N}_{A}\left(h^{\prime}\right)$ of the binary expansion of $\mathbb{N}_{A}(h)$.

The encoding map \mathbb{R}_{A}

The encoding map \mathbb{R}_{A}

Definition $\left(\mathbb{R}_{A}\right.$ over HF \quad)

$$
\mathbb{R}_{A}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{-\mathbb{R}_{A}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}
$$

defines the \mathbb{R}_{A}-codes of the hereditarily finite
sets

The encoding map \mathbb{R}_{A}

Definition $\left(\mathbb{R}_{A}\right.$ over HF ${ }^{1 / 2} \quad$)

$$
\mathbb{R}_{A}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{-\mathbb{R}_{A}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}^{1 / 2}
$$

defines the \mathbb{R}_{A}-codes of the hereditarily finite hypersets

The encoding map \mathbb{R}_{A}

Definition $\left(\mathbb{R}_{A}^{\mu}\right.$ over $\left.\mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}\right)$

$$
\mathbb{R}_{A}^{\mu}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{-\mathbb{R}_{A}\left(h^{\prime}\right)} \cdot \mu_{h}\left(h^{\prime}\right) \quad \text { for } h \in \mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}
$$

defines the \mathbb{R}_{A}-codes of the hereditarily finite hypersets and multisets.

The encoding map \mathbb{R}_{A}

Definition $\left(\mathbb{R}_{A}^{\mu}\right.$ over $\left.\mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}\right)$

$$
\mathbb{R}_{A}^{\mu}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{-\mathbb{R}_{A}\left(h^{\prime}\right)} \cdot \mu_{h}\left(h^{\prime}\right) \quad \text { for } h \in \mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}
$$

defines the \mathbb{R}_{A}-codes of the hereditarily finite hypersets and multisets.

Example
\mathbb{R}_{A}^{μ} is not injective over HF^{μ} :

$$
\mathbb{R}_{A}^{\mu}([[\emptyset],[\emptyset]])=1
$$

The encoding map \mathbb{R}_{A}

Definition $\left(\mathbb{R}_{A}^{\mu}\right.$ over $\left.\mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}\right)$

$$
\mathbb{R}_{A}^{\mu}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} 2^{-\mathbb{R}_{A}\left(h^{\prime}\right)} \cdot \mu_{h}\left(h^{\prime}\right) \quad \text { for } h \in \mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}
$$

defines the \mathbb{R}_{A}-codes of the hereditarily finite hypersets and multisets.

Example
\mathbb{R}_{A}^{μ} is not injective over HF^{μ} :

$$
\mathbb{R}_{A}^{\mu}([[\emptyset],[\emptyset]])=1
$$

Example
\mathbb{R}_{A} is not injective over $\mathrm{HF}^{1 / 2}$:

$$
\mathbb{R}_{A}(\{\{\{\{\cdots\},\{\emptyset\}\},\{\emptyset\}\},\{\emptyset\}\})=1
$$

The encoding map \mathfrak{A}_{β}

Remark - x β 'has as special cases both $\mathbb{N A}_{A}(\beta=2)$ and $\mathbb{R}_{A}^{\mu}(\beta=1 / 2)$.

The encoding map \mathfrak{A}_{β}

Definition $\left(\mathfrak{A}_{\beta}\right.$-code)
Let $\beta \in \mathbb{R}^{+} \backslash\{1\}$; then

$$
\mathfrak{A}_{\beta}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} \mu_{h}\left(h^{\prime}\right) \cdot \beta^{\mathfrak{A}_{\beta}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}
$$

defines the \mathfrak{A}_{β}-codes of the hereditarily finite (hyper-, multi-) sets.

The encoding map \mathfrak{A}_{β}

Definition $\left(\mathfrak{A}_{\beta}\right.$-code)
Let $\beta \in \mathbb{R}^{+} \backslash\{1\}$; then

$$
\mathfrak{A}_{\beta}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} \mu_{h}\left(h^{\prime}\right) \cdot \beta^{\mathfrak{A}_{\beta}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}
$$

defines the \mathfrak{A}_{β}-codes of the hereditarily finite (hyper-, multi-) sets.

Remark

- \mathfrak{A}_{β} has as special cases both $\mathbb{N}_{A}(\beta=2)$ and $\mathbb{R}_{A}^{\mu}(\beta=1 / 2)$.

The encoding map \mathfrak{A}_{β}

Definition (\mathfrak{A}_{β}-code)
Let $\beta \in \mathbb{R}^{+} \backslash\{1\}$; then

$$
\mathfrak{A}_{\beta}(h) \stackrel{\text { def }}{=} \sum_{h^{\prime} \in h} \mu_{h}\left(h^{\prime}\right) \cdot \beta^{\mathfrak{A}_{\beta}\left(h^{\prime}\right)} \quad \text { for } h \in \mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}
$$

defines the \mathfrak{A}_{β}-codes of the hereditarily finite (hyper-, multi-) sets.

Remark

- \mathfrak{A}_{β} has as special cases both $\mathbb{N}_{A}(\beta=2)$ and $\mathbb{R}_{A}^{\mu}(\beta=1 / 2)$.
- Whatever β is chosen, $\mathfrak{A}_{\beta}(\emptyset)=0, \mathfrak{A}_{\beta}(\{\emptyset\})=1$.

Hereditarily finite m-multisets

Hereditarily finite m-multisets

Definition (m-powerset)
Given a multiset X and $m \in \mathbb{N}^{+}$, define

$$
\begin{array}{r}
\mathscr{P}^{(m)}(X)=\left\{\left\{{ }^{m_{1}} x_{1}, \ldots,{ }^{m_{n}} x_{n}\right\} \mid x_{1}, \ldots, x_{n} \in X \wedge(\forall i \neq j)\left(x_{i} \neq x_{j}\right)\right. \\
\\
\left.\wedge m_{1}, \ldots, m_{n} \in \mathbb{N}^{+} \wedge(\forall i)\left(m_{i} \leq m\right) \wedge n \in \mathbb{N}\right\} .
\end{array}
$$

Hereditarily finite m-multisets

Definition (m-powerset)
Given a multiset X and $m \in \mathbb{N}^{+}$, define

$$
\begin{array}{r}
\mathscr{P}^{(m)}(X)=\left\{\left\{{ }^{m_{1}} x_{1}, \ldots,{ }^{m_{n}} x_{n}\right\} \mid x_{1}, \ldots, x_{n} \in X \wedge(\forall i \neq j)\left(x_{i} \neq x_{j}\right)\right. \\
\\
\left.\wedge m_{1}, \ldots, m_{n} \in \mathbb{N}^{+} \wedge(\forall i)\left(m_{i} \leq m\right) \wedge n \in \mathbb{N}\right\} .
\end{array}
$$

Definition (Hereditarily finite m-multisets)
Let $m \in \mathbb{N}^{+} \backslash\{1\}$; then the following defines the family of h.f. m-multisets.

$$
\mathrm{HF}_{n}^{(m)}=\left\{\begin{array}{ll}
\emptyset & \text { if } n=0 \\
\mathscr{P}^{(m-1)}\left(\mathrm{HF}_{n-1}^{(m)}\right) & \text { if } n \in \mathbb{N}^{+},
\end{array} \quad \mathrm{HF}^{(m)}=\bigcup_{n \in \mathbb{N}} \mathrm{HF}_{n}^{(m)}\right.
$$

The \mathfrak{A}_{m} encoding of $\mathrm{HF}^{(m)}$

Remark

The \mathfrak{A}_{m} encoding of $\mathrm{HF}^{(m)}$

Theorem
Let $m \in \mathbb{N}^{+} \backslash\{1\}$. Then the encoding map

$$
\left.\mathfrak{A}_{m}\right|_{\mathbf{H F}^{(m)}}: \quad \mathbf{H F}^{(m)} \longrightarrow \mathbb{N}
$$

is bijective.

The \mathfrak{A}_{m} encoding of $\mathrm{HF}^{(m)}$

Theorem
Let $m \in \mathbb{N}^{+} \backslash\{1\}$. Then the encoding map

$$
\left.\mathfrak{A}_{m}\right|_{\mathbf{H F}^{(m)}}: \quad \mathbf{H F}^{(m)} \longrightarrow \mathbb{N}
$$

is bijective.

Remark

- \mathfrak{A}_{m} is a bijection between $\mathrm{HF}^{(m)}$ and \mathbb{N}.

The \mathfrak{A}_{m} encoding of $\mathrm{HF}^{(m)}$

Theorem
Let $m \in \mathbb{N}^{+} \backslash\{1\}$. Then the encoding map

$$
\left.\mathfrak{A}_{m}\right|_{\mathbf{H F}^{(m)}}: \quad \mathbf{H F}^{(m)} \longrightarrow \mathbb{N}
$$

is bijective.

Remark

- \mathfrak{A}_{m} is a bijection between $\mathrm{HF}^{(m)}$ and \mathbb{N}.
- \mathfrak{A}_{m} gives a natural, total ordering to $\mathrm{HF}^{(m)}$.

The \mathfrak{A}_{m} encoding of $\mathrm{HF}^{(m)}$

Theorem
Let $m \in \mathbb{N}^{+} \backslash\{1\}$. Then the encoding map

$$
\left.\mathfrak{A}_{m}\right|_{\mathbf{H F}^{(m)}}: \quad \mathbf{H F}^{(m)} \longrightarrow \mathbb{N}
$$

is bijective.

Remark

- \mathfrak{A}_{m} is a bijection between $\mathrm{HF}^{(m)}$ and \mathbb{N}.
- \mathfrak{A}_{m} gives a natural, total ordering to $\mathrm{HF}^{(m)}$.
- $H^{\prime}{ }^{k} \in H$ for $H, H^{\prime} \in \mathrm{HF}^{(m)}$ if and only if there is a ' k ' at position $\mathfrak{A}_{m}\left(H^{\prime}\right)$ of the m-ary expansion of $\mathfrak{A}_{m}(H)$.

An example with $\beta=3$

$\mathfrak{A}_{3}(h)$	$\left(\mathfrak{A}_{3}(h)\right)_{3}$	$\sum_{h^{\prime} \in h} \mu_{h}\left(h^{\prime}\right) \cdot 3^{\mathfrak{A}_{3}\left(h^{\prime}\right)}$	Multiset	Corr. set
0	0	0	\emptyset	\emptyset
1	1	3^{0}	$[\emptyset]$	$\{\emptyset\}$
2	2	$2 \cdot 3^{0}$	$[\emptyset, \emptyset]$	$\{\emptyset\}$
3	10	3^{1}	$[\emptyset \emptyset]]$	$\{\{\emptyset\}\}$
4	11	$3^{1}+3^{0}$	$[\emptyset \emptyset], \emptyset]$	$\{\{\emptyset\}, \emptyset\}$
5	12	$3^{1}+2 \cdot 3^{0}$	$[[\emptyset], \emptyset, \emptyset]$	$\{\{\emptyset\}, \emptyset\}$
6	20	$2 \cdot 3^{1}$	$[[\emptyset],[\emptyset]]$	$\{\{\emptyset\}\}$
7	21	$2 \cdot 3^{1}+3^{0}$	$[\emptyset\rceil],\lceil], \emptyset]$	$\{\{\emptyset\}, \emptyset\}$
8	22	$2 \cdot 3^{1}+2 \cdot 3^{0}$	$[[\emptyset],[\emptyset], \emptyset, \emptyset]$	$\{\{\emptyset\}, \emptyset\}$
9	100	3^{2}	$[[\emptyset, \emptyset]]$	$\{\{\emptyset\}\}$

A theorem by Euler and some consequences

A theorem by Euler and some consequences

Theorem (Euler, 1777)
The function $x=f(z)=z^{z^{z}} \quad$ converges when $e^{-e} \leq z \leq e^{1 / e}$ and diverges for all other positive z outside this interval.

A theorem by Euler and some consequences

Theorem (Euler, 1777)
The function $x=f(z)=z^{z^{z^{z}}} \quad$ converges when $e^{-e} \leq z \leq e^{1 / e}$ and diverges for all other positive z outside this interval.

Remark
If $f(z)=z^{z^{z}} \quad$ converges, then it is a solution of $x=z^{x}$, or $x^{1 / x}=z$.

A theorem by Euler and some consequences

Theorem (Euler, 1777)
The function $x=f(z)=z^{z^{z^{z}}} \quad$ converges when $e^{-e} \leq z \leq e^{1 / e}$ and diverges for all other positive z outside this interval.

Remark
If $f(z)=z^{z^{z}} \quad$ converges, then it is a solution of $x=z^{x}$, or $x^{1 / x}=z$.

Corollary
Let Ω be the solution of $\varsigma=\{\varsigma\}$; then its \mathfrak{A}_{β}-code, which is a solution of $x=\beta^{x}$, is defined for every $e^{-e} \leq \beta<1$ and $1<\beta \leq e^{1 / e}$.

\mathfrak{A}_{β}-code system

\mathfrak{A}_{β}-code system

Definition

Consider the set system $\mathscr{S}\left(\varsigma_{0}, \varsigma_{1}, \ldots, \varsigma_{n}\right)$. Given $\beta \in \mathbb{R}^{+} \backslash\{1\}$, $e^{-e} \leq \beta \leq e^{1 / e}$, the \mathfrak{A}_{β}-code system of $\mathscr{S}\left(\varsigma_{0}, \varsigma_{1}, \ldots, \varsigma_{n}\right)$ in the real unknowns $x_{0}, x_{1}, \ldots, x_{n}$ is

$$
\mathscr{C}_{\beta}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{c}
x_{0}=\beta^{x_{0,1}}+\cdots+\beta^{x_{0, m_{0}}} \\
x_{1}=\beta^{x_{1,1}}+\cdots+\beta^{x_{1, m_{1}}} \\
\vdots \\
x_{n}=\beta^{x_{n, 1}}+\cdots+\beta^{x_{n, m_{n}}}
\end{array}\right.
$$

with $x_{i, j} \in\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$.

Multiset approximating sequence

Multiset approximating sequence

- Every h.f. rational hyperset can be approximated by a sequence of h.f. multisets

$$
\left\langle H_{i}^{j} \mid 0 \leq i \leq n\right\rangle= \begin{cases}\langle\emptyset \mid 0 \leq i \leq n\rangle & \text { if } j=0 \\ \left\langle\left[H_{i, 1}^{j}, \ldots, H_{i, m_{i}}^{j}\right] \mid 0 \leq i \leq n\right\rangle & \text { if } j>0\end{cases}
$$

Multiset approximating sequence

- Every h.f. rational hyperset can be approximated by a sequence of h.f. multisets

$$
\left\langle H_{i}^{j} \mid 0 \leq i \leq n\right\rangle= \begin{cases}\langle\emptyset \mid 0 \leq i \leq n\rangle & \text { if } j=0 \\ \left\langle\left[H_{i, 1}^{j}, \ldots, H_{i, m_{i}}^{j}\right] \mid 0 \leq i \leq n\right\rangle & \text { if } j>0\end{cases}
$$

- The sequence of their \mathfrak{A}_{β}-codes is then meant to approximate the \mathfrak{A}_{β}-code of the related hyperset; its \mathfrak{A}_{β}-code increment sequence is then defined as

$$
\delta_{i}^{j}=\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)-\mathfrak{A}_{\beta}\left(H_{i}^{j}\right)
$$

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.
- The first value of the \mathfrak{A}_{β}-code increment sequence is the number of elements of the corresponding set.

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.
- The first value of the \mathfrak{A}_{β}-code increment sequence is the number of elements of the corresponding set.
- δ_{i}^{j+1} can be re-written as $\sum_{u=1}^{j} \beta^{\mathfrak{A}_{\beta}\left(H_{i, u}^{j}\right)}\left(\beta^{\delta_{i}^{j}}-1\right)$.

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.
- The first value of the \mathfrak{A}_{β}-code increment sequence is the number of elements of the corresponding set.
- δ_{i}^{j+1} can be re-written as $\sum_{u=1}^{j} \beta^{\mathfrak{A}_{\beta}\left(H_{i, u}^{j}\right)}\left(\beta^{\delta_{i}^{j}}-1\right)$.
(1) $\beta<1$.

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.
- The first value of the \mathfrak{A}_{β}-code increment sequence is the number of elements of the corresponding set.
- δ_{i}^{j+1} can be re-written as $\sum_{u=1}^{j} \beta^{\mathfrak{A}_{\beta}\left(H_{i, u}^{j}\right)}\left(\beta^{\delta_{i}^{j}}-1\right)$.
(1) $\beta<1$.
- The odd-indexed subsequence of $\left(\delta_{i}^{j}\right)_{j \in \mathbb{N}}$ is non-positive, while the even-indexed subsequence is non-negative.

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.
- The first value of the \mathfrak{A}_{β}-code increment sequence is the number of elements of the corresponding set.
- δ_{i}^{j+1} can be re-written as $\sum_{u=1}^{j} \beta^{\mathfrak{A}_{\beta}\left(H_{i, u}^{j}\right)}\left(\beta^{\delta_{i}^{j}}-1\right)$.
(1) $\beta<1$.
- The odd-indexed subsequence of $\left(\delta_{i}^{j}\right)_{j \in \mathbb{N}}$ is non-positive, while the even-indexed subsequence is non-negative.
- The sequence $\left(\left|\delta_{i}^{j}\right|\right)_{j \in \mathbb{N}}$ is decreasing.

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.
- The first value of the \mathfrak{A}_{β}-code increment sequence is the number of elements of the corresponding set.
- δ_{i}^{j+1} can be re-written as $\sum_{u=1}^{j} \beta^{\mathfrak{A}_{\beta}\left(H_{i, u}^{j}\right)}\left(\beta^{\delta_{i}^{j}}-1\right)$.
(1) $\beta<1$.
- The odd-indexed subsequence of $\left(\delta_{i}^{j}\right)_{j \in \mathbb{N}}$ is non-positive, while the even-indexed subsequence is non-negative.
- The sequence $\left(\left|\delta_{i}^{j}\right|\right)_{j \in \mathbb{N}}$ is decreasing.
(2) $\beta>1$.

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.
- The first value of the \mathfrak{A}_{β}-code increment sequence is the number of elements of the corresponding set.
- δ_{i}^{j+1} can be re-written as $\sum_{u=1}^{j} \beta^{\mathfrak{A}_{\beta}\left(H_{i, u}^{j}\right)}\left(\beta^{\delta_{i}^{j}}-1\right)$.
(1) $\beta<1$.
- The odd-indexed subsequence of $\left(\delta_{i}^{j}\right)_{j \in \mathbb{N}}$ is non-positive, while the even-indexed subsequence is non-negative.
- The sequence $\left(\left|\delta_{i}^{j}\right|\right)_{j \in \mathbb{N}}$ is decreasing.
(2) $\beta>1$.
- The sequence $\left(\delta_{i}^{j}\right)_{j \in \mathbb{N}}$ is non-negative.

Properties of the \mathfrak{A}_{β}-code approximating sequence

Lemma

- Each \mathfrak{A}_{β}-code approximating value $\mathfrak{A}_{\beta}\left(H_{i}^{j+1}\right)$ is the sum of the \mathfrak{A}_{β}-code increment sequence's values until the j-th step.
- The first value of the \mathfrak{A}_{β}-code increment sequence is the number of elements of the corresponding set.
- δ_{i}^{j+1} can be re-written as $\sum_{u=1}^{j} \beta^{\mathfrak{A}_{\beta}\left(H_{i, u}^{j}\right)}\left(\beta^{\delta_{i}^{j}}-1\right)$.
(1) $\beta<1$.
- The odd-indexed subsequence of $\left(\delta_{i}^{j}\right)_{j \in \mathbb{N}}$ is non-positive, while the even-indexed subsequence is non-negative.
- The sequence $\left(\left|\delta_{i}^{j}\right|\right)_{j \in \mathbb{N}}$ is decreasing.
(2) $\beta>1$.
- The sequence $\left(\delta_{i}^{j}\right)_{j \in \mathbb{N}}$ is non-negative.
- If there exists a k such that $\delta_{i}^{k+1} \geq \delta_{i}^{k}$, then the increment sequence is increasing from the k-th step on.

A conjecture on \mathfrak{A}_{β}

- The convergence on the \mathfrak{A}_{β}-codes of the h.f. well-founded sets and multisets is guaranteed by the convergence of the multiset approximating sequence.
- Convergence on the \mathfrak{A}_{β}-codes on the h.f. hypersets is not proven yet.

A conjecture on \mathfrak{A}_{β}

Remark

- The convergence on the \mathfrak{A}_{β}-codes of the h.f. well-founded sets and multisets is guaranteed by the convergence of the multiset approximating sequence.

A conjecture on \mathfrak{A}_{β}

Remark

- The convergence on the \mathfrak{A}_{β}-codes of the h.f. well-founded sets and multisets is guaranteed by the convergence of the multiset approximating sequence.
- Convergence on the \mathfrak{A}_{β}-codes on the h.f. hypersets is not proven yet.

A conjecture on \mathfrak{A}_{β}

Remark

- The convergence on the \mathfrak{A}_{β}-codes of the h.f. well-founded sets and multisets is guaranteed by the convergence of the multiset approximating sequence.
- Convergence on the \mathfrak{A}_{β}-codes on the h.f. hypersets is not proven yet.
- Some simple hypersets have their code defined for $e^{-e} \leq \beta<1$, but not for the whole $1<\beta \leq e^{1 / e}$.

A conjecture on \mathfrak{A}_{β}

Remark

- The convergence on the \mathfrak{A}_{β}-codes of the h.f. well-founded sets and multisets is guaranteed by the convergence of the multiset approximating sequence.
- Convergence on the \mathfrak{A}_{β}-codes on the h.f. hypersets is not proven yet.
- Some simple hypersets have their code defined for $e^{-e} \leq \beta<1$, but not for the whole $1<\beta \leq e^{1 / e}$.

Conjecture

Consider $\beta \in \mathbb{R}^{+}, e^{-e} \leq \beta<1$, and $\hbar \in \mathrm{HF}^{1 / 2}$. Then, there exists and is unique its \mathfrak{A}_{β}-code.

Algebraic and transcendental bases

Algebraic and transcendental bases

Remark

Since multisets introduce multiple occurrences of their elements, for every algebraic basis $e^{-e} \leq \beta<1$ there are issues similar to the one already encountered for \mathbb{R}_{A} : an algebraic basis β satisfies

$$
P(\beta)=0 \quad \text { where } \quad P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k} \in \mathbb{Z}[x] .
$$

Therefore, a transcendental basis is preferrable to get injectivity.

Algebraic and transcendental bases

Remark

Since multisets introduce multiple occurrences of their elements, for every algebraic basis $e^{-e} \leq \beta<1$ there are issues similar to the one already encountered for \mathbb{R}_{A} : an algebraic basis β satisfies

$$
P(\beta)=0 \quad \text { where } \quad P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k} \in \mathbb{Z}[x] .
$$

Therefore, a transcendental basis is preferrable to get injectivity.

Conjecture

The $\mathfrak{A}_{e^{-1}}$ encoding of h.f. multisets and hypersets is injective over the whole universe $\mathrm{HF}^{1 / 2} \cup \mathrm{HF}^{\mu}$.

Open problems

> - The challenging problem of proving existence and uniqueness of the \mathfrak{A}_{β}-codes of $\mathrm{HF}^{1 / 2}$ is still there for any $e^{-e} \leq \beta<1$.
> - Determining the range in which a $\beta>1$ must lie in to ensure existence of the code of each h.f. hyperset might be a way to introduce a non-arbitrary concept of rank for the universe of such aggregates.

Open problems

- The challenging problem of proving existence and uniqueness of the \mathfrak{A}_{β}-codes of $\mathrm{HF}^{1 / 2}$ is still there for any $e^{-e} \leq \beta<1$.

Open problems

- The challenging problem of proving existence and uniqueness of the \mathfrak{A}_{β}-codes of $\mathrm{HF}^{1 / 2}$ is still there for any $e^{-e} \leq \beta<1$.
- Determining the range in which a $\beta>1$ must lie in to ensure existence of the code of each h.f. hyperset might be a way to introduce a non-arbitrary concept of rank for the universe of such aggregates.

Main references

- P. Aczel, Non-Well-Founded Sets, Csli Lecture Notes, Palo Alto, CA, USA, 1988.
- D. Cantone, A. Policriti, Encoding sets as real numbers, in: M. Cristiá, D. Delahaye, C. Dubois (Eds.), Proceedings of the 3rd International Workshop on Sets and Tools, volume 2199 of CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp. 2-16.
- D. Cantone, A. Policriti, Squeezing multisets into real numbers, 2021.
- A. Policriti, Encodings of sets and hypersets, in: D. Cantone, M. N. Asmundo (Eds.), Proceedings of the 28th Italian Conference on Computational Logic, volume 1068 of CEUR Workshop Proceedings, CEUR-WS.org, 2013, pp. 235-240.
- R. A. Knoebel, Exponentials reiterated, The American Mathematical Monthly 88, 1981, pp. 235-252.

