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Introduction and basic notions

Introduction

Why multisets?
They find application in computer sciences as a generalisation of lists.
Hereditarily finite multisets are used to write a simpler termination
function w.r.t. its equivalent which uses hereditarily finite sets only.

Their encoding could help to develop a unique formalisation of the theory.

Why hypersets?

They admit cicles in the membership relation (non-wellfoundedness);
bisimilarity is assumed as equality criterion.
Hereditarily finite hypersets can represent finite state automata or,
more generally, graphs labelled on edges.

Their encoding would be useful to efficiently compute bisimulations, thus
to tackle DFA minimisation (related to the graph isomorphism problem).
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Introduction and basic notions Hereditarily finite sets

Hereditarily finite sets

Definition (Hereditarily finite sets)

HFn =

{
∅ if n = 0

P(HFn−1) if n ∈ N+,
HF =

⋃
n∈N

HFn

defines the cumulative hierarchy of the hereditarily finite sets.
Given h ∈ HF, its rank rk(h) is defined as the least integer r such that
h ∈ HFr+1.

Example

∅ {∅} {{∅}} {{∅}, ∅} {{{∅}}} {{{∅}}, ∅} {{{∅}}, {∅}} . . .
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Introduction and basic notions Hereditarily finite multisets

Multisets

Definition (Multisets)

Let O1, . . . , On be n distinct objects and let m1, . . . ,mn ∈ N+ be positive
integers; then the list

M = [O1, . . . , O1︸ ︷︷ ︸
m1

, . . . , On, . . . , On︸ ︷︷ ︸
mn

],

or equivalently
M = { Om1

1, . . . , Omn
n},

up to any permutation, defines the multiset M containing the objects
O1, . . . , On with multiplicities m1, . . . ,mn respectively. The multiplicity
map of M and its multiset membership relation are then defined as

µM (Oi) = mi ⇐⇒ Oi ∈mi M.
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Introduction and basic notions Hereditarily finite multisets

Hereditarily finite multisets

Definition (µ-powerset)

Given a multiset X, define

Pµ(X) =
{
{ xm1

1, . . . , xmn
n} | x1, . . . , xn ∈ X ∧ (∀i ̸= j)(xi ̸= xj)

∧m1, . . . ,mn ∈ N+ ∧n ∈ N
}
.

Definition (Hereditarily finite multisets)

HFµn =

{
∅ if n = 0

Pµ(HFµn−1) if n ∈ N+,
HFµ =

⋃
n∈N

HFµn

defines the cumulative hierarchy of the hereditarily finite multisets.
Given H ∈ HFµ, its rank rk(H) is the least integer r such that H ∈ HFµr+1.
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Introduction and basic notions Hereditarily finite hypersets

Bisimilarity

Definition (Bisimulation)

A dyadic relation ♭ on the finite set V of the nodes of a directed graph
M = (V,E) is said to be a bisimulation on M if u0♭u1 always implies that

for every child v1 of u1, u0 has at least one child v0 s.t. v0♭v1, and
for every child v0 of u0, u1 has at least one child v1 s.t. v0♭v1.

The largest of all bisimulations on M (relative to inclusion) is the following
equivalence relation.

Definition (Bisimilarity)

The bisimilarity of a digraph M whose set V of nodes is finite is the dyadic
relation ≡M over V such that u ≡M v holds between u, v in V if and only
if u ♭ v holds for some bisimulation ♭ on M.
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Introduction and basic notions Hereditarily finite hypersets

Hereditarily finite rational hypersets

Definition (Hereditarily finite rational hyperset)

ς0 is said to be an hereditarily finite rational hyperset if it can be described
by a finite set system whose transitive closure is still finite:

S (ς0, ς1, . . . , ςn) =


ς0 = {ς0,1, . . . , ς0,m0}
ς1 = {ς1,1, . . . , ς1,m1}

...
ςn = {ςn,1, . . . , ςn,mn}

with ςi,j ∈ {ς0, ς1, . . . , ςn}. H.f. rational hypersets are denoted by HF1/2.

Example

The hyperset Ω = {Ω} = {{Ω}} = {{{· · · }}} is the one solving the
set-theoretic equation ς = {ς}.
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Encoding sets as natural or real numbers The Ackermann encoding

The Ackermann encoding of HF

Definition (Ackermann encoding of HF)

NA(h)
def
=

∑
h′∈h

2NA(h′) for h ∈ HF

defines the Ackermann encoding of hereditarily finite sets.

Remark
NA is a bijection between HF and N.
NA gives a natural, total ordering to HF.
h′ ∈ h for h, h′ ∈ HF if and only if there is a ‘1’ at position NA(h

′) of
the binary expansion of NA(h).
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Encoding sets as natural or real numbers The RA map

The encoding map RA

Definition (Rµ
A over HF 1/2 ∪ HFµ )

Rµ
A(h)

def
=

∑
h′∈h

2−RA(h′) · µh(h
′) for h ∈ HF 1/2 ∪ HFµ

defines the RA-codes of the hereditarily finite hypersets and multisets.

Example

Rµ
A is not injective over HFµ: Rµ

A

(
[[∅], [∅]]

)
= 1.

Example

RA is not injective over HF1/2: RA

(
{{{{· · · }, {∅}}, {∅}}, {∅}}

)
= 1.
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A generalised Ackermann map Definition

The encoding map Aβ

Definition (Aβ-code)

Let β ∈ R+ \{1}; then

Aβ(h)
def
=

∑
h′∈h

µh(h
′) · βAβ(h

′) for h ∈ HF1/2 ∪HFµ

defines the Aβ-codes of the hereditarily finite (hyper-, multi-) sets.

Remark

Aβ has as special cases both NA (β = 2) and Rµ
A (β = 1/2).

Whatever β is chosen, Aβ(∅) = 0, Aβ({∅}) = 1.
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Remark

Aβ has as special cases both NA (β = 2) and Rµ
A (β = 1/2).

Whatever β is chosen, Aβ(∅) = 0, Aβ({∅}) = 1.
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A generalised Ackermann map Natural basis

Hereditarily finite m-multisets

Definition (m-powerset)

Given a multiset X and m ∈ N+, define

P(m)(X) =
{
{ xm1

1, . . . , xmn
n} | x1, . . . , xn ∈ X ∧ (∀i ̸= j)(xi ̸= xj)

∧m1, . . . ,mn ∈ N+ ∧(∀i)(mi ≤ m) ∧ n ∈ N
}
.

Definition (Hereditarily finite m-multisets)

Let m ∈ N+ \{1}; then the following defines the family of h.f. m-multisets.

HF(m)
n =

{
∅ if n = 0

P(m−1)(HF
(m)
n−1) if n ∈ N+,

HF(m) =
⋃
n∈N

HF(m)
n .
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A generalised Ackermann map Natural basis

The Am encoding of HF(m)

Theorem

Let m ∈ N+ \{1}. Then the encoding map

Am
∣∣
HF(m)

: HF(m) −→ N

is bijective.

Remark

Am is a bijection between HF(m) and N.
Am gives a natural, total ordering to HF(m).
H ′ ∈k H for H,H ′ ∈ HF(m) if and only if there is a ‘k’ at position
Am(H ′) of the m-ary expansion of Am(H).
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A generalised Ackermann map Natural basis

An example with β = 3

A3(h)
(
A3(h)

)
3

∑
h′∈h µh(h

′) · 3A3(h
′) Multiset Corr. set

0 0 0 ∅ ∅

1 1 30 [∅] {∅}

2 2 2 · 30 [∅, ∅] {∅}

3 10 31
[
[∅]

] {
{∅}

}
4 11 31 + 30

[
[∅], ∅

] {
{∅}, ∅

}
5 12 31 + 2 · 30

[
[∅], ∅, ∅

] {
{∅}, ∅

}
6 20 2 · 31

[
[∅], [∅]

] {
{∅}

}
7 21 2 · 31 + 30

[
[∅], [∅], ∅

] {
{∅}, ∅

}
8 22 2 · 31 + 2 · 30

[
[∅], [∅], ∅, ∅

] {
{∅}, ∅

}
9 100 32

[
[∅, ∅]

] {
{∅}

}
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A generalised Ackermann map Real basis

A theorem by Euler and some consequences

Theorem (Euler, 1777)

The function x = f(z) = zz
z·

··

converges when e−e ≤ z ≤ e1/e and
diverges for all other positive z outside this interval.

Remark

If f(z) = zz
z·

··

converges, then it is a solution of x = zx, or x1/x = z.

Corollary

Let Ω be the solution of ς = {ς}; then its Aβ-code, which is a solution of
x = βx, is defined for every e−e ≤ β < 1 and 1 < β ≤ e1/e.
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A generalised Ackermann map Real basis

Aβ-code system

Definition

Consider the set system S (ς0, ς1, . . . , ςn). Given β ∈ R+ \{1},
e−e ≤ β ≤ e1/e, the Aβ-code system of S (ς0, ς1, . . . , ςn) in the real
unknowns x0, x1, . . . , xn is

Cβ(x0, x1, . . . , xn) =


x0 = βx0,1 + · · ·+ βx0,m0

x1 = βx1,1 + · · ·+ βx1,m1

...
xn = βxn,1 + · · ·+ βxn,mn

with xi,j ∈ {x0, x1, . . . , xn}.
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A generalised Ackermann map Real basis

Multiset approximating sequence

Every h.f. rational hyperset can be approximated by a sequence of
h.f. multisets

⟨Hj
i | 0 ≤ i ≤ n⟩ =

{
⟨∅ | 0 ≤ i ≤ n⟩ if j = 0〈
[Hj

i,1, . . . ,H
j
i,mi

] | 0 ≤ i ≤ n
〉

if j > 0,

The sequence of their Aβ-codes is then meant to approximate the
Aβ-code of the related hyperset; its Aβ-code increment sequence is
then defined as

δji = Aβ(H
j+1
i )− Aβ(H

j
i )
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A generalised Ackermann map Real basis

Properties of the Aβ-code approximating sequence

Lemma

Each Aβ-code approximating value Aβ(H
j+1
i ) is the sum of the

Aβ-code increment sequence’s values until the j-th step.
The first value of the Aβ-code increment sequence is the number of
elements of the corresponding set.

δj+1
i can be re-written as

∑j
u=1 β

Aβ(H
j
i,u)(βδji − 1).

1 β < 1.
The odd-indexed subsequence of (δji )j∈N is non-positive, while the
even-indexed subsequence is non-negative.
The sequence (|δji |)j∈N is decreasing.

2 β > 1.
The sequence (δji )j∈N is non-negative.
If there exists a k such that δk+1

i ≥ δki , then the increment sequence is
increasing from the k-th step on.
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A generalised Ackermann map Real basis

A conjecture on Aβ

Remark
The convergence on the Aβ-codes of the h.f. well-founded sets and
multisets is guaranteed by the convergence of the multiset
approximating sequence.
Convergence on the Aβ-codes on the h.f. hypersets is not proven yet.

Some simple hypersets have their code defined for e−e ≤ β < 1, but
not for the whole 1 < β ≤ e1/e.

Conjecture

Consider β ∈ R+, e−e ≤ β < 1, and ℏ ∈ HF1/2. Then, there exists and is
unique its Aβ-code.
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not for the whole 1 < β ≤ e1/e.

Conjecture

Consider β ∈ R+, e−e ≤ β < 1, and ℏ ∈ HF1/2. Then, there exists and is
unique its Aβ-code.

Boscaratto, Omodeo, Policriti Generalised Ackermann encodings 26/06/2024 18 / 21



A generalised Ackermann map Real basis

Algebraic and transcendental bases

Remark
Since multisets introduce multiple occurrences of their elements, for every
algebraic basis e−e ≤ β < 1 there are issues similar to the one already
encountered for RA: an algebraic basis β satisfies

P (β) = 0 where P (x) = a0 + a1x+ a2x
2 + · · ·+ akx

k ∈ Z[x].

Therefore, a transcendental basis is preferrable to get injectivity.

Conjecture
The Ae−1 encoding of h.f. multisets and hypersets is injective over the
whole universe HF1/2 ∪HFµ.
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Conclusions

Open problems

The challenging problem of proving existence and uniqueness of the
Aβ-codes of HF1/2 is still there for any e−e ≤ β < 1.
Determining the range in which a β > 1 must lie in to ensure existence
of the code of each h.f. hyperset might be a way to introduce a
non-arbitrary concept of rank for the universe of such aggregates.
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