On two-variable first-order logic with a partial order

Dariusz Marzec, Lidia Tendera

June 26, 2024

CILC 2024 39th Italian Conference on Computational Logic 26-28 June 2024, Rome, Italy

Contents

- 2 $\mathcal{FO}^2 1 PO_{fw}$ is not locally finite
- 3 Bounded antichains for $\mathcal{FO}^2 1PO_{fw}$
- 4 FMP for a syntactic restriction

SAT problem for \mathcal{FO}^2

The satisfiability problem for first-order logic, denoted as **Sat**(\mathcal{FO}) is a decision problem which returns 'yes' iff a first-order sentence φ is satisfiable and 'no' otherwise.

In general, **Sat**(\mathcal{FO}) is undecidable. However, if we take a sublogic of \mathcal{FO} in which we can use at most two variables in each sentence (denoted as \mathcal{FO}^2), we have the following well-known result.

Time complexity for $Sat(\mathcal{FO}^2)$

The satisfiability problem for \mathcal{FO}^2 is NExPTIME-complete. (Grädel, Kolaitis, Vardi in 1997)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Expressive power of \mathcal{FO}^2

We refer to the set of all predicates for some \mathcal{FO} -sentence as a (standard) signature. Note that there are relations which are not expressible in \mathcal{FO}^2 :

- transitivity: $\forall x \forall y \forall z ((x < y) \land (y < z) \rightarrow (x < z))$,
- linear order: transitivity + antisymmetry + $\forall x \forall y ((x < y) \lor (y < x))$,
- partial order: transitivity + irreflexivity,
- equivalence: transitivity + symmetry + reflexivity.

As **Sat**(\mathcal{FO}^2) is decidable, we often consider satisfiability problems for \mathcal{FO}^2 for which the standard signature is extended by distinguished predicates. The most interesting one is transitivity.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Results for **Sat**(\mathcal{FO}^2) with an extended signature

The table below summarizes known results concerning **Sat** for two-variable first-order logic with a standard signature extended by distinguished relations.

Logic	Special	Number of special symbols			
Logic	symbols	1	2	3 or more	
	transitivity	?	undecidable _{Kieroński} (2005), _{Kazakov} (2006)	undecid.	
\mathcal{FO}^2	linear order	NEXPTIME- -complete _{Otto} (2001)	decidable Toruńczyk, Zeume (2022)	undecid. _{Kieroński} (2012)	
NEXPTIME- -complete Grädel, Kolaitis, Vardi (1997)	equivalence	NEXPTIME- -complete ^{Kieroński, Otto} (2005)	2-NExPTIME- -complete Kieroński, Michaliszyn, Pratt-Hartmann, Tendera (2014)	undecid. ^{Grädel, Otto} (1999)	

Results for **Sat**(\mathcal{FO}^2) with an extended signature

The table below summarizes known results concerning **Sat** for two-variable first-order logic with a standard signature extended by distinguished relations.

Logic	Special	Number of special symbols		
Logic	symbols	1	2	3 or more
	transitivity	?	undecidable _{Kieroński} (2005), _{Kazakov} (2006)	undecid.
\mathcal{FO}^2	linear order	NEXPTIME- -complete _{Otto} (2001)	decidable Toruńczyk, Zeume (2022)	undecid. _{Kieroński} (2012)
NEXPTIME- -complete Grädel, Kolaitis, Vardi (1997)	equivalence	NEXPTIME- -complete ^{Kieroński, Otto} (2005)	2-NExPTIME- -complete Kieroński, Michaliszyn, Pratt-Hartmann, Tendera (2014)	undecid. ^{Grädel, Otto} (1999)

\mathcal{FO}^2 with transitivity and its fragments

Let $\sigma = \sigma_0 \cup \{<\}$ where σ_0 is a standard signature and < is a binary relation which is interpreted as a transitive relation. We denote such fragment as \mathcal{FO}^21T . We consider the following sublogics:

- A fragment with a distinguished predicate < is interpreted as a (strict) partial order, here denoted by \mathcal{FO}^21PO . The logic \mathcal{FO}^21T is easily reducible to \mathcal{FO}^21PO .
- The fragment of *FO*²1PO where using the negation formal form for some formula, ∃-quantifiers can be applied only to conjunctions of the form: ψ ∧ (x < y) ∧ (y < x) or ψ ∧ ¬(x < y) ∧ (y < x) or ψ ∧ (x < y) ∧ ¬(y < x), called the fragment with transitive witnesses, *FO*²1PO_{tw}.
- The similar fragment of *FO*²1PO as above but using conjunctions of the form: ψ ∧ ¬(x < y) ∧ ¬(y < x), called the fragment with free witnesses, *FO*²1PO_{fw}.

Aim and motivation for our work

- We know that the **finite** satisfiability problem for \mathcal{FO}^21PO is decidable (Pratt-Hartmann in 2018).
- We know that $Sat(\mathcal{FO}^{2}1PO_{tw})$ is decidable (Tendera, Szwast in 2019).
- Still, we do not know much about \$\mathcal{F}\mathcal{O}^2 1PO_{fw}\$. First of all, we do not know whether \$\mathbf{Sat}(\mathcal{F}\mathcal{O}^2 1PO_{fw}\$)\$ is decidable. Our paper indicates properties which seem to be critical for solving \$\mathbf{Sat}(\mathcal{F}\mathcal{O}^2 1PO\$)\$ and \$\mathbf{Sat}(\mathcal{F}\mathcal{O}^2 1T\$)\$.

Aim and motivation for our work

We have also found a restriction of $\mathcal{FO}^2 1PO_{fw}$ which satisfies the finite model property and has the following features:

- It allows us to express the mutual exclusion property of events in concurrent systems: for two events x and y the formula
 ¬∃x∃y(Cx ∧ Cy ∧ x ~ y) says that x and y cannot access the same critical section at the same time.
- It allows us to express cross product of two classes of elements corresponding to natural statements such as 'elephants are bigger than mice' that are not guarded.

$\mathcal{FO}^2 1 PO_{fw}$ is not locally finite

Result 1

June 26, 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Notions and symbols

- For a given σ-structure with domain A and a partial order <, the interval I of distinct elements a, b ∈ A is defined as the set of elements 'between' a and b: I(a, b) = {b ∈ A | a < c < b}.
- We say that a logic is locally finite if for a satisfiable sentence φ in the logic, there is a model such that every interval is finite.

We employ a few abbreviations:

•
$$\mathbf{x} \sim \mathbf{y}$$
: $\neg (x < y) \land \neg (y < x) \land x \neq y$;

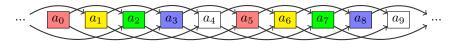
•
$$\mathbf{x} \bowtie \mathbf{y}$$
: $x < y \lor y < x \lor x = y$;

● **a** mod **b**: *[a]_b*.

An axiom of infinity

We present a simple sentence $\Phi_{sp(P)}$ which enforces an infinite model. Let k = 5 and let $\{A_i \mid 0 \le i < k\}$ be standard predicates. We denote to $\Phi_{sp(A)}$ as an A-spiral:

$$\exists x \Big(A_0 x \Big) \land \land_{i=0}^{k-3} \Big(\forall x (A_i x \to \forall y (A_{i+2} y \to x \bowtie y)) \land \\ \land_{i=0}^{k-1} \Big(\forall x (A_i x \to \exists y (A_{\lfloor i+1 \rfloor_k} y \land x \sim y)) \Big) \land \\ \land_{i=0}^{k-1} \Big(\forall x (A_i x \to \exists y (A_{\lfloor i-1 \rfloor_k} y \land x \sim y)) \Big).$$



We show how to 'intertwine' two types of spirals in order to enforce infinite intervals. Let k = 5 and let $\{A_i \mid 0 \le i < k\} \cup \{B_i \mid 0 \le i < k\}$ be a standard signature. Define Φ :

$$\left(\Phi_{sp(A)} \wedge \Phi_{sp(B)}\right) \wedge$$
 (1)

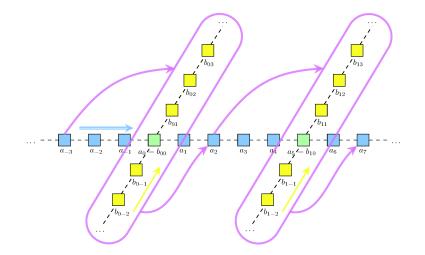
$$\forall x \Big(A_0 x \leftrightarrow B_0 x \Big) \land \tag{2}$$

$$\wedge_{i=0}^{k-1} \Big(\forall x (A_2 x \to \forall y (B_i y \to x \bowtie y)) \Big).$$
(3)

12 / 27

The sentence Φ is a satisfiable $\mathcal{FO}_u^2 1PO_{fw}$ -sentence for which we enforce infinite intervals, so that $\mathcal{FO}^2 1PO_{fw}$ is **not** locally finite.

A model of Φ



< A > <

∃ ► < ∃ ►</p>

æ

$\mathcal{FO}^2 1 \mathsf{PO}_{\mathit{fw}}$ has bounded antichain property

Result 2

June 26, 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Chains and antichains

Let (X, <) be a partially ordered set, where < denotes a strict partial order, i.e. a binary relation that is irreflexive and transitive.

- A set Y ⊆ X is a chain if all elements of Y are mutually comparable w.r.t. <.
- A set Y ⊆ X is an antichain if all elements of Y are mutually incomparable w.r.t. <.
- We say that a logic has bounded antichain property if for a satisfiable sentence φ in the logic, there is a model in which every antichain is finite.

No bounded antichains for \mathcal{FO}^21PO

It turns out that in the general case, the logic \mathcal{FO}^21PO has **no** bounded antichain property. Let $\{P, Q\}$ be a standard signature. The following sentence enforces an infinite antichain:

$$\exists x \ Px \land \forall x (Px \to \forall y (Py \to x \bowtie y)) \land \\ \forall x (Qx \to \forall y (Qy \to x \sim y)) \land \\ \forall x (Px \to \exists y (Qy \land x \sim y)) \land \\ \forall x (Qx \to \exists y (Py \land x < y)).$$



Dariusz Marzec, Lidia Tendera

On two-variable FOL with a partial order

Bounded antichains for \mathcal{FO}^21PO_{fw}

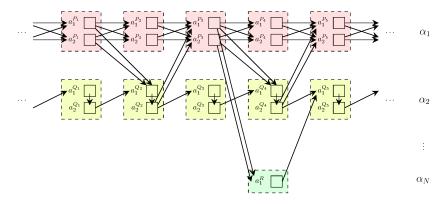
However, if take a sublogic of \mathcal{FO}^21PO , the fragment \mathcal{FO}^21PO_{fw} , we are able to show that the logic \mathcal{FO}^21PO_{fw} has the bounded antichain property.

Notions:

- Let σ be a signature. We assume that < is included in σ but = is not. A 1-type α is the maximal consistent set of the literals of atomic unary predicates from σ. For a given σ-structure with domain A, we say that a ∈ A has 1-type α if α is the unique 1-type such that α[a] is true, which is denoted by tp[a] = α.
- Let P, Q ⊆ A be two distinct subsets. The abbreviation P < Q means that for every pair of elements a ∈ P and b ∈ Q, we have a < b.

Factorization for σ -structures

The below σ -structure has a factorization distinguished by dashed rectangles. The elements of the structure have 1-types $\alpha_1, \alpha_2, ..., \alpha_N$.



Factorizations and *M*-balanced structures

For a given σ -structure with domain A, let a factorization \mathbb{P} be a set of disjoint non-empty subsets of A, called blocks, having following features:

- $\bigcup_{P \in \mathbb{P}} P = A$: the blocks of \mathbb{P} form a partition of A;
- for every block $P \in \mathbb{P}$, there exists a 1-type α such that for every $b \in P$, $tp[b] = \alpha$: every block has 1-type α ;
- for every pair of distinct blocks $P, Q \in \mathbb{P}$, such that all elements in $P \cup Q$ have the same 1-type, we have either P < Q or Q < P: blocks with the same 1-type are linearly ordered.

If for every $P \in \mathbb{P}$, the size of the blocks is bounded by a constant M, we say that the σ -structure with a factorization \mathbb{P} is an M-balanced structure.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Maximal factorizations

We can order factorizations w.r.t. \sqsubseteq :

- We have a pair of factorizations \mathbb{P} and \mathbb{Q} .
- We say that P ⊑ Q iff for every block Q ∈ Q, there exists a block P ∈ P such that either P = Q or P can be divided into at least two blocks.
- The relation \sqsubseteq is a (non-strict) partial order.

The following holds due to Zorn's lemma.

Maximal factorization

Every σ -structure has a maximal factorization w.r.t. \sqsubseteq .

 $\begin{array}{ccc} & & \mathcal{FO}^2 1 PO_{fw} \text{ is not locally finite} \\ & & \mathbf{OOOOOO} \\ & & \mathbf{OOOOOOOOOOOOOOOO} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOO} \\ & & \mathbf{OOO} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOO} \\ & & \mathbf{OOO} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOO} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOO} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOO} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOOOOOOO \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOOO \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOO \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{FO}^2 1 PO_{fw} \\ & & \mathbf{OOOOOOOOOOOOOOO \\ \end{array} \\ \end{array}$ \\ \end{array}

Basic normal form for unary $\mathcal{FO}^2 1PO_{fw}$

We consider a fragment of $\mathcal{FO}^2 1PO_{fw}$ where only unary predicates are allowed in our standard signature, denoted as $\mathcal{FO}_u^2 1PO_{fw}$. We say that an $\mathcal{FO}_u^2 1PO_{fw}$ -sentence Ψ' is in basic normal form if it is a conjunction of formulas of the following form:

$$\begin{aligned} &\forall x(\alpha(x) \to \forall y(\alpha(y) \to \varphi_{\alpha})), \\ &\forall x(\alpha(x) \to \forall y(\beta(y) \to \varphi_{\beta})), \\ &\forall x(\alpha(x) \to \exists y(\mu(y) \land x \sim y)), \\ &\forall x \ \mu, \ \exists x \ \mu. \end{aligned}$$

We assume that α, β are distinct 1-types, φ_{α} and φ_{β} are quantifier-free formulas featuring only $\{<,=\}$ and μ is a quantifier-free unary formula not featuring <. The **Sat**(\mathcal{FO}_{u}^{2} 1PO_{fw}) problem for a sentence φ is easily reducible to the **Sat** problem for a sentence in basic normal form.

Costructing an *M*-balanced model of φ

Having a satisfiable $\mathcal{FO}_u^2 1\text{PO}_{fw}$ -sentence φ in basic normal form and its model with domain A and with maximal factorization \mathbb{P} , we can construct an M-balanced model of φ (with $M \ge 2$) as follows:

- For each P ∈ P, choose |P| elements from P if |P| ≤ M or choose M elements from P otherwise.
- Crop the model according to the choices from the previous step. We denote the chosen elements in each P by A^P.
- **3** Set < in a new model as follows:
 - For each block $P \in \mathbb{P}$, set $a \sim a'$ for each distinct $a, a' \in A^P$.
 - For each pair of distinct blocks $P, Q \in \mathbb{P}$ such that neither P < Q nor Q < P, set $a \sim a'$ for each $a \in A^P$ and $a' \in A^Q$.
 - For each pair of distinct blocks P, Q ∈ P such that P < Q, set a < a' for each a ∈ A^P and a' ∈ A^Q.

Bounded antichain property for $\mathcal{FO}^2 1PO_{fw}$

We summarize as follows.

M-balanced models for sentences in basic normal form

Let φ be a satisfiable $\mathcal{FO}_u^2 1PO_{fw}$ -sentence in basic normal form and let $M \ge 2$. Then, φ has an *M*-balanced model.

Soundness of our construction is a consequence of particular features about maximal factorizations.

Extending our proof to the whole logic $\mathcal{FO}^2 1PO_{fw}$ is not complicated.

Bounded antichain property for \mathcal{FO}^21PO_{fw}

Let φ be a satisfiable $\mathcal{FO}^2\mathrm{1PO}_{\mathit{fw}}\text{-sentence}.$ Then, φ has a model with bounded antichains.

(日)

э

There is a considerable restriction of $\mathcal{FO}_u^2 1PO_{fw}$ in basic normal form which has finite model property

Result 3

June 26, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Basic normal form for unary $\mathcal{FO}^2 1PO_{fw}$

Recall that an $\mathcal{FO}_u^2 1PO_{fw}$ -sentence Ψ' is in basic normal form if it is a conjunction of formulas of the following form:

$$\begin{aligned} &\forall x(\alpha(x) \to \forall y(\alpha(y) \to \varphi_{\alpha})), \\ &\forall x(\alpha(x) \to \forall y(\beta(y) \to \varphi_{\beta})), \\ &\forall x(\alpha(x) \to \exists y(\mu(y) \land x \sim y)), \\ &\forall x \ \mu, \ \exists x \ \mu. \end{aligned}$$

We assume that α, β are distinct 1-types, φ_{α} and φ_{β} are quantifier-free formulas featuring only $\{<,=\}$ and μ is a quantifier-free unary formula not featuring <.

Basic normal form for unary $\mathcal{FO}^2 1PO_{fw}$

Recall that an $\mathcal{FO}_u^2 1PO_{fw}$ -sentence Ψ' is in basic normal form if it is a conjunction of formulas of the following form:

$$\begin{aligned} &\forall x(\alpha(x) \to \forall y(\alpha(y) \to \varphi_{\alpha})), \\ &\forall x(\alpha(x) \to \forall y(\beta(y) \to \varphi_{\beta})), \\ &\forall x(\alpha(x) \to \exists y(\mu(y) \land x \sim y)), \\ &\forall x \ \mu, \ \exists x \ \mu. \end{aligned}$$

We assume that α, β are distinct 1-types, φ_{α} and φ_{β} are quantifier-free formulas featuring only $\{<,=\}$ and μ is a quantifier-free unary formula not featuring <.

Our result concerning the unary fragment

It turns out that for an $\mathcal{FO}_u^2 1PO_{fw}$ -sentence φ , we can exclude some conjuncts from basic normal form so that we obtain the finite model property.

FMP for a fragment of $\mathcal{FO}_{\mu}^{2}1PO_{fw}$ in basic normal form

Let φ be a $\mathcal{FO}_u^2 1PO_{fw}$ -sentence in basic normal form which does not contain conjuncts of the form:

$$\forall x \Big(\alpha(x) \to \forall y \big(\beta(y) \to x \bowtie y \big) \Big).$$

If φ is satisfiable, then it has a model which size is bounded exponentially in the size of $\varphi.$

Future work

- We identified a minimal fragment of *FO*²1PO which is critical for answering **Sat**(*FO*²1PO).
- It is planned to study **Sat**(\mathcal{FO}^2 1PO) on scattered structures.
- We believe that the bounded antichain property for $\mathcal{FO}^2 1PO_{fw}$ allows us to employ some automata techniques to handle scattered structures in the context of $\mathcal{FO}^2 1PO$.